Studies on the Influence of Ti on Mechanical Properties in A356 Alloy

Article Preview

Abstract:

The effect of different contents of Ti on mechanical properties in A356 alloy was researched in this study. The results reveal that the variation is not following the law that the more the content of Ti is, the better the tensile strength and hardness would be in the range of 0% to 7.5% Ti. However, the mechanical properties undergo improving first as the content of Ti is less than 0.3% and then reducing with the addition of Ti. Based on the different contents of Ti, the tensile fracture surfaces are studied to verify the effect of different contents of Ti, It is concluded that the variations of tensile fracture surfaces are in accordance with those of mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

1776-1780

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.Z. Zhao and T. Tsuchida, Effect of fabrication conditions and Cr, Zr contents on the grain structure of 7075 and 6061 aluminum alloys, Mater. Sci. Eng. A499 (2009) 78-82.

DOI: 10.1016/j.msea.2007.09.094

Google Scholar

[2] M. Haghshenas, A. Zarei-Hanzaki, H. Sabetghadam, High-energy ultrasonic field effects on the microstructure and mechanical behaviors of A356 alloy, J. Alloy. Comp. 477(2009) 250-256.

DOI: 10.1016/j.jallcom.2008.10.090

Google Scholar

[3] D. G. Mallapur, K. R. Udupa, S. A. Kori, Studies on the influence of grain refining and modification on microstructure and mechanical properties of forged A356 alloy, Mater. Sci. Eng. A528 (2011) 4747-4752.

DOI: 10.1016/j.msea.2011.02.086

Google Scholar

[4] H.L. Zhao, H.L. Bai, J. Wang, S.K. Guan, Preparation of Al–Ti–C–Sr master alloys and their refining efficiency on A356 alloy, Mater. Charat. 60 (2009) 377-383.

DOI: 10.1016/j.matchar.2008.10.012

Google Scholar

[5] B.C. L, Y. K. Park, H.S. Ding, Effects of rheocasting and heat treatment on microstructure and mechanical properties of A356 alloy, Mater. Sci. Eng, A528 (2011) 986-995.

Google Scholar

[6] S. Kumar, V. S. Sarma, B.S. Murty, A statistical analysis on erosion wear behaviour of A356 alloy reinforced with in situ formed TiB2 particles, Mater. Sci. Eng. A476 (2008) 333-340.

DOI: 10.1016/j.msea.2007.04.113

Google Scholar

[7] M. Haghshenas, A. Z. Hanzaki, S.M. Fatemi-Varzaneh, The effects of thermo-mechanical parameters on the microstructure of Thixocast A356 aluminum alloy, Mater. Sci. Eng. A480 (2008) 68-74.

DOI: 10.1016/j.msea.2007.06.075

Google Scholar

[8] M. E. Seniw, J. G. Conley, M. E. Fine, The effect of microscopic inclusion locations and silicon segregation on fatigue lifetimes of aluminum alloy A356 castings, Mater. Sci. Eng. A285 (2000) 43-48.

DOI: 10.1016/s0921-5093(00)00663-8

Google Scholar

[9] Y. Deng, Z.M. Yin, J.W. Huang, Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature, Mater. Sci. Eng. A528 (2011) 1780-1786.

DOI: 10.1016/j.msea.2010.11.016

Google Scholar

[10] X. Jian, T. T. Meek, Q. Han, Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration, Script. Mater. 54(2006) 893-896.

DOI: 10.1016/j.scriptamat.2005.11.004

Google Scholar

[11] A. K. Rao, K. Das, B. S. Murty, M. Chakraborty, Microstructural features of as-cast A356 alloy inoculated with Sr, Sbmodifiers and Al–Ti–C grain refiner simultaneously, Mater. Lett. 62 (2008) 273-275.

DOI: 10.1016/j.matlet.2007.05.020

Google Scholar