Simulation of Dynamic Recrystallization for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy in β Processed Using Cellular Automaton

Article Preview

Abstract:

The cellular automaton (CA) method coupling fundamental metallurgical principles was used to simulate the dynamic recrystallization (DRX) behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy in β processed. Using physically based rules for the simulation of nucleation and growth phenomena of dynamically recrystallized grains. The effects of hot deformation temperature and true strain on the DRX characteristic of the alloy during β processed was studied, and the results compared with experiments. The predictions show very good agreement with the experimental results for the alloy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

1781-1785

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.Y. Zong, D.B. Shan, M. Xu, Y. Lu, J. Mater. Process. Technol. 209(2009) 1988-1994.

Google Scholar

[2] X.Y. Zhang, M.Q. Li, H. Li, J. Luo, S.B. Su, H. Wang, Mater. Des. 31(2010) 2851-2857.

Google Scholar

[3] Y.G. Zhou, W.D. Zeng, H.Q. Yu, Mater. Sci. Eng. A 393 (2005) 204-212.

Google Scholar

[4] H.W. Hesselbarth, I.R. Gobel, Acta Metall. 39 (1991) 2135-2143.

Google Scholar

[5] R.L. Goetz, V. Seetharaman, Scripta Mater. 38 (1998) 405-413.

Google Scholar

[6] C.W. Zheng, D. Raabe, D.Z. Li, Acta Mater. 60 (2012) 4768-4779.

Google Scholar

[7] H. Hallberg, M Wallin, M Ristinmaa, Comput. Mater. Sci. 49 (2010) 25-34.

Google Scholar

[8] R. Ding, Z.X. Guo, Mater. Sci. Eng. A 365 (2004) 172-179.

Google Scholar

[9] N.M. Xiao, C.W. Zheng, D.Z. Li, Y.Y. Li, Comput. Mater. Sci. 41 (2008) 366-374.

Google Scholar

[10] F.J. Humphreys, M. Hatherrly, Recrystallization and related annealing phenomena, Rergamon Press, Oxford, 2004.

Google Scholar

[11] S. Takeuchi, A.S. Argon, J. Mater. Sci. 11 (1976) 1542-1547.

Google Scholar

[12] D. Mclean, Grain boundaries in metals, University Press, Oxford, 1957.

Google Scholar

[13] H.P. Stuwe, B. Ortner, Metals. Sci. 8 (1974) 161-167.

Google Scholar

[14] R. Ding, Z.X. Guo, Acta Mater. 49 (2001) 3163-3175.

Google Scholar

[15] R. Ding, Z.X. Guo, Comput. Mater. Sci. 23 (2002) 209-218.

Google Scholar

[16] H. Mecking, U.F. Kocks, Acta Metall. 29 (1981) 1865-1875.

Google Scholar

[17] C.W. Zheng, N.M. Xiao, L.H. Hao, D.Z.Li, Y.Y. Li, Acta Mater. 57 (2009) 2956-2968.

Google Scholar

[18] H.J. Frost, M.F. Ashby, Deformation-mechanism maps, the plasticity and creep of metals and ceramics, Pergamon Press, Oxford, 1982.

Google Scholar