Photoluminescence of Y2O3:Eu3+ Prepared by the Wood Template

Article Preview

Abstract:

Cubic Y2O3:Eu3+ was successfully prepared by mimicking wood tissue of Nepal Alder. Its structure was characterized by X-ray diffraction pattern (XRD) and Energy dispersive X-ray spectroscopy (EDX). The results show that the sample shares the single phase of cubic structure. The composition analysis shows an approximate Y3+ to Eu3+ atom ratio of about 10:1. The scanning electron microscopy (SEM) images confirm that the sample shares the same shape as the wood tissue of Nepal Alder, which was composed of some thin fibers. The red phosphor exhibits strong red emission of the 5D0 → 7F2 transition for Eu3+ at 611 nm, under 254 nm excitation

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

1962-1967

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.G. Pappalardo and R.B. Hunt: J Electrochem Soc Vol. 132 (1985), p.721

Google Scholar

[2] C. R.Ronda: J. Alloys Compd. Vol. 225 (1995), p.534

Google Scholar

[3] T. Justel, H. Nikol and C.Ronda: Angew Chem Int Ed Vol. 37 (1998), p.3084

Google Scholar

[4] X. Jing, T. Ireland, C. Gibbons, D. J. Barber, J. Silver, A. Vecht, G. Fern, P. Trowga and D.C. Morton: J Electrochem Soc Vol. 146 (1999), p.4654

DOI: 10.1149/1.1392689

Google Scholar

[5] C. H. Kim, I. E. Kwon, C. H. Park, Y.J. Hwang, H.S. Bae, B.Y. Yu, C. H. Pyun and G. Y. Hong: J Alloys Compd Vol. 311 (2000), p.33

Google Scholar

[6] W. W. Zhang, M. Xu, W. P. Zhang, M. Yin, Z. M. Qi, S. D. Xia and C. Garapon: Chem Phys Lett Vol. 376 (2003), p.318.

Google Scholar

[7] G. S. Wu, Y. Lin, X. Y. Yuan, T. Xie, B. C. Cheng and L.D. Zhang: Nanotechnology Vol 15 (2004), p.568

Google Scholar

[8] K. Y. Jung and K. H.Han: Electrochem Solid State Lett Vol. 8 (2005), pH17

Google Scholar

[9] X. Wang, Y. D. Li: Angew Chem Int Ed. Vol 41 (2002), p.4790

Google Scholar

[10] G. Wakefield, E. Holland, P. J. Dobson and J. L. Hutchison: Adv Mater Vol. 13 (2001), p.1557

Google Scholar

[11] A. P. Jadhav, C. W. Kim, H. G. Cha, A. U Pawar, N. A. Jadhav, U. Pal and Y. S. Kang: J Phys Chem C Vol. 113 (2009), p.13600.

Google Scholar

[12] P. Greil: J Eur Ceram Soc Vol.21 (2001), p.105

Google Scholar

[13] Y. Shin, J. Liu, J. H. Chang, Z. Nie and G. J..Exarhos: Adv Maters Vol. 13 (2001), p.728

Google Scholar

[14] A. S. Deshpande, I. Burgert and O. Paris: Small Vol. 2 (2006), p.994

Google Scholar

[15] C. R. Rambo, T. Andrade, T. Fey, H. Sieber, A.E. Martinelli and P. Greil: J Am Ceram Soc Vol. 91 (2008), p.852

Google Scholar

[16] P. Greil, T. Lifka and A. Kaindl and J Eur Ceram Soc Vol. 18 (1998), p.1961

Google Scholar

[17] S.E. Stanzl-Tschegg: Adv Engineering Materials Vol. 11 (2009), p.600

Google Scholar

[18] M. H. Kostova, C. Zollfrank, M. Batentschuk, F. Goetz-Neunhoeffer, A. Winnacker and P. Greil: Adv Funct Mater Vol. 18 (2008), p.1

DOI: 10.1002/adfm.200990010

Google Scholar