Structural and Photocatalytic Properties of Fe-Dope TiO2 Nanostructure Using the Hydrothermal Treatment Method

Article Preview

Abstract:

In this work optical properties of CuO nanostructure were studied. CuO nanostructure were synthesized by the hydrothermal treatment method. The structural and chemical natures of the obtained materials were studied using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and study optical properties by UV-visible spectral. The XRD patterns of the CuO nanostructures indicated that CuO phases (JCPDS 05- 0661). The top-view SEM images, it can be seen clearly that high-density, horizontally scattered nanorod were grown on the product prepared at concentration of NaOH (aq) 7.5 M at 180 C for 12 h. The spectral of UV-vis data recorded showed the strong cut off at 341 nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2261-2263

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Domen, S.N. Natio, T. Onsishi, K. Tamaru: Chem. Phys. Lett. Vol. 92(1982), p.433–434.

Google Scholar

[2] J. Kiwi, M. Gr¨atzel: Phys. Chem. Vol. 88 (1984), p.1302–1307.

Google Scholar

[3] X. G. Qu, W. X. Liu, J. Ma, D. N. Yu, W. B. Cao, J. H. Mao: Materials Sci. Forum Vol. 620-622 (2009), pp.703-706.

Google Scholar

[4] J. Ma, Y. Wei, W. X. Liu, W. B. Cao: Re. Chem. Intermediates Vol. 35( 2009), pp.329-336.

Google Scholar

[5] X. H. Yu, C. S. Li, Y. Ling, T. A. Tang, Q. Wu, J. J Kong: Alloys and Compounds Vol. 507(2010), pp.33-37.

Google Scholar

[6] Y. T. Song, W. N Shao, W. B. Cao: Materials Science Form Vol. 695 (2011), pp.489-492.

Google Scholar

[7] B. S. Liu, X. L. Wang, G. F. Cai, L. P. Wen, Y. B. Song, X. J. Zhao: Hazardous Materials Vol. 169 (2009), pp.1112-1118.

Google Scholar

[8] W. B. Cao, Y. Wei, Y. H. Li, X. N. Zhang : Key Engineering Materials Vol. 336-338 (2007), p.1972-(1975).

Google Scholar

[9] H. Y. Li, D.J. Wang, H. M. Fan, P. Wang, T. F. Jiang , T. F. Xie: Colloid and Interface Science Vol. 354 ( 2011), pp.175-180.

Google Scholar

[10] M. Hamadanian, A. Reisi-Vanani, A. Majedi: Materials Chemsistry and Physics Vol. 116 (2009), pp.376-382.

DOI: 10.1016/j.matchemphys.2009.03.039

Google Scholar

[11] Y. Y. Lv, L. S. Yu, H. Y. Huang, H. H Liu, Y. Y. Feng: Alloy and Compounds Vol. 488 (2009), pp.314-319.

Google Scholar

[12] J. Jitputti, S. Pavasupree, Y. Suzuki, S. Yoshikawa: Appl. Phys. Vol. 47 (2008), pp.751-756.

Google Scholar

[13] R. Yoshida, Y. Suzuki, S. Yoshikawa: Solid State Chem. Vol. 178 (2005), p.2179.

Google Scholar

[14] Y. Suzuki, S. Yoshikawa: Mater. Res. Vol. 19 (2004), p.982.

Google Scholar

[15] M. Asilturk, F. Sayılkan, E. Arpac: Photochemistry and Photobiology A. Chem. Vol 203 (2009), p.64– 71.

Google Scholar