Preparation of Zirconium Titanate Ceramics by Alloy Oxidation Method

Article Preview

Abstract:

In this paper, the investigations are presented for preparation of zirconium titanate ceramics by pressureless sintering of powders obtained by alloy oxidation method. ZrxTi1-xO2 (x=0.40-0.60) powders were prepared by the oxidation of Zr-Ti alloys. The zirconium titanate powders were sintered in the temperature range from 1400 to 1600 °C for 3 h by pressureless sintering. The relationships among the composition, the relative densities and microstructure of bulk ceramic were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show the sintering and microstructure of single phase zirconium titanate ceramics varied with ZrO2 content. The relative density of samples reaches the maximum value of near 92% when sintering temperature is up to 1600 °C. Irregular pores distributed uniformly among the particles in the sintered ceramics with homogeneous microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2402-2405

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.A. Navio, M. Macias, P.J. Sanchez-Soto: J. Mater. Sci. Lett. Vol. 11 (1992), p.1570.

Google Scholar

[2] A. Bianco, G. Gusmano, R. Freer, P. Smith: J. Eur. Ceram. Soc. Vol. 19 (1999), p.959.

Google Scholar

[3] M. Dondi, F. Matteucci, and G. Cruciani: J. Solid State Chem. Vol. 179 (2006), p.233.

Google Scholar

[4] S. Yang and J.M. Wu: J. Mater. Sci. Vol. 26 (1991), p.631.

Google Scholar

[5] D.A. Chang, P. Lin, and T. Tseng: J. Appl. Phys. Vol. 77 (1995), p.4445.

Google Scholar

[6] U. Troitzsch and D.J. Ellis: Eur. J. Mineral. Vol. 16 (2004), p.577.

Google Scholar

[7] E. López-López, I. Santacruz, L. Leon-Reina, M.A.G. Aranda, R. Moreno, C. Baudín: J. Eur. Ceram. Soc. Vol. 32 (2012), p.1205.

Google Scholar

[8] H. Ikawa, A. Iwai, K. Hiruta, H. Shimojima, K. Urabe, S. Udagawa: J. Am. Ceram. Soc. Vol. 71 (1988), p.120.

Google Scholar

[9] M. Cerqueira, R.S. Nasar, E. Longo, E.R. Leite, J.A. Varela: Mater. Lett. Vol. 22 (1995), p.181.

Google Scholar

[10] X. Miao, D. Sun, P.W. Hoo, J. Liu, Y. Hu, and Y. Chen: Ceram. Int. Vol. 30 (2004), p.1041.

Google Scholar

[11] J. Yang and J.M.F. Ferreira: Mater. Res. Bull. Vol. 33 (1998), p.389.

Google Scholar

[12] M. Daturi, A. Cremona, F. Milella, G. Busca, and E. Vogna: J. Eur. Ceram. Soc. Vol. 18 (1998), p.1079.

Google Scholar

[13] E.L. Sham, M.A.G. Aranda, E.M. Farfa-Torres, J.C. Gottifredi, M. Martinez-Lara and S. Bruque: J. Solid State Chem. Vol. 139 (1998), p.225.

Google Scholar

[14] A.E. McHale, R.S. Roth: J. Am. Ceram. Soc. Vol. 69 (1986), p.827.

Google Scholar

[15] E. López-López, C. Baudín, R. Moreno, I. Santacruz, L. Leon-Reina, M.A.G. Aranda: J. Eur. Ceram. Soc. Vol. 32 (2012), p.299.

Google Scholar