Approximate Elastodynamic Directional-Cloak with Isotropous Homogeneous Material

Article Preview

Abstract:

Recently, the transformation method has been extended to control solid elastic waves in case of high frequency or small material gradient. An important device in practice, the approximate elastodynamic directional-cloak with isotropic homogeneous materials, can be designed based on this method. In this paper, this device’s design method is discussed in detail and its effect on cloaking arbitrary shaped obstacles is explored. It is also shown that this useful device cannot be designed based on the conventional transformation elastodynamics. Examples are conceived and validated by numerical simulations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2787-2790

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Greenleaf, M. Lassas and G. Uhlmann, Math. Res. Lett. 10, 685 (2003).

Google Scholar

[2] U. Leonhardt, Science 312, 1777 (2006).

Google Scholar

[3] J. B. Pendry, D. Schurig and D. R. Smith, Science 312, 1780 (2006).

Google Scholar

[4] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, Science 314, 977 (2006).

DOI: 10.1126/science.1133628

Google Scholar

[5] H. Chen and C. T. Chan, Appl. Phys. Lett., 91, 183518, (2007).

Google Scholar

[6] T. Chen, C. N Weng and J. S. Chen, Appl. Phys. Lett., 93, 114103 (2008).

Google Scholar

[7] S. Zhang, D. A. Genov, C Sun and X. Zhang, Phys. Rev. Lett., 100, 123002 (2008).

Google Scholar

[8] G. W. Milton, M. Briane and J. R. Willis, New J. Phys. 8, 248(2006).

Google Scholar

[9] M. Brun, S. Guenneau and A. B. Movchan, Appl. Phys. Lett. 94, 061903 (2009).

Google Scholar

[10] F. G. Vasquez, G. W. Milton, D. O. and P. Seppecher, arXiv: 1105. 1221v1.

Google Scholar

[11] N. Norris and A. L. Shuvalov. Wave Motion 48, 525(2011).

Google Scholar

[12] J. Hu J, Z. Chang, and G. Hu, Phys. Rev. B 84, 201101(R) (2011).

Google Scholar

[13] J. Hu, X. Liu and G. K. Hu, Wave Motion, doi: 10. 1016/j. wavemoti. 2012. 08. 004 (2012).

Google Scholar

[14] J. Hu and X. Y. Lu, arXiv: 1208. 2959 (2012).

Google Scholar

[15] Z. Chang, J. Hu, G. Hu, R. Tao and Y. Wang, Appl. Phys. Lett. 98, 121904 (2011).

Google Scholar

[16] J. Achenbach, Wave Propagation in Elastic Solids. (North-Holland Pub. Co., Amsterdam, 1973).

Google Scholar

[17] A. V. Amirkhizi, A. Tehranian, S. Nemat-Nasser, Wave Motion 47, 519 (2010).

DOI: 10.1016/j.wavemoti.2010.03.005

Google Scholar