Constitutive Modeling of Mechanical Behavior of Metallic Materials with Nanocrystalline Surface Layer

Article Preview

Abstract:

A constitutive model, adopting the modified Khan, Huang and Liang (KHL) viscoplastic model to describe plastic deformation of metallic materials with different grain sizes in the range of nanometers to micrometers at different strain rates, was presented to simulate the mechanical behavior of iron sample with nanocrystalline surface layer. Stress-strain curve and yield stress of the iron sample were calculated by means of this model. Influence of grain size distribution in the cross section was also investigated. The simulation results indicate that the yield stress can be increased after the formation of the nanocrystalline surface layer. And an increment of the fraction of the nanocrystalline layer can improve the yield stress further.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2813-2817

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Suryanarayana: International Materials Reviews Vol. 40 (1995), p.41.

Google Scholar

[2] M.A. Meyers, A. Mishra and D.J. Benson: Progress in Materials Science Vol. 51 (2006), p.427.

Google Scholar

[3] H.W. Zhang, Z.K. Hei, G. Liu, J. Lu and K. Lu: Acta Materialia Vol. 51 (2003), p.1871.

Google Scholar

[4] K. Lu and J. Lu: Materials Science and Engineering A Vol. 375-377 (2004), p.38.

Google Scholar

[5] N.R. Tao, M.L. Sui, J. Lu and K. Lu: Nanostructured Materials Vol. 11 (1999), p.433.

Google Scholar

[6] Y. Todaka, M. Umemoto and K. Tsuchiya: Materials Transactions Vol. 45 (2004), p.376.

Google Scholar

[7] N.R. Tao, W.P. Tong, Z.B. Wang, W. Wang, M.L. Sui, J. Lu and K. Lu: Journal of Materials Science and Technology Vol. 19 (2003), p.563.

Google Scholar

[8] L. Huang, J. Lu and M. Troyon: Surface and Coatings Technology Vol. 201 (2006), p.208.

Google Scholar

[9] M. Umemoto: Materials Transactions Vol. 44 (2003), p. (1900).

Google Scholar

[10] H.L. Chan, H.H. Ruan, A.Y. Chen and J. Lu: Acta Materialia Vol. 58 (2010), p.5086.

Google Scholar

[11] A.S. Khan, Y.S. Suh and R. Kazmi: International Journal of Plasticity Vol. 20 (2004), p.2233.

Google Scholar

[12] A.S. Khan, Y.S. Suh, X. Chen, L. Takacs and H. Zhang: International Journal of Plasticity vol. 22 (2006), p.195.

Google Scholar

[13] A.S. Khan, H. Zhang and L. Takacs: International Journal of Plasticity Vol. 16 (2000), p.1459.

Google Scholar

[14] M.A. Meyers, D.J. Benson, O. Vohringer, B.K. Kad, Q. Xue and H.H. Fu: Materials Science and Engineering A Vol. 322 (2002), p.194.

Google Scholar

[15] X.H. Chen, L. Lu and K. Lu: Scripta Materialia Vol. 64 (2011), p.311.

Google Scholar

[16] X.D. Zhang, N. Hansen, Y.K. Gao and X.X. Huang: Acta Materialia Vol. 60 (2012), p.5933.

Google Scholar

[17] J. Petit, L. Waltz, G. Montay, D. Retraint, A. Roos and M. Francois: Materials Science and Engineering A Vol. 536 (2012), p.124.

DOI: 10.1016/j.msea.2011.12.085

Google Scholar

[18] M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson and E. Ma: Acta Materialia Vol. 55 (2007), p.4041.

Google Scholar