A Comparison of the H3PW12O40/MCM-41 and HY Zeolite for Alkenylation of p-Xylene with Phenylacetylene

Article Preview

Abstract:

The initial activity, selectivity, and especially catalytic stability of mesoporous MCM-41 supported phosphotungstic acid (HPW) prepared by ultrasonic-assisted impregnation (UAI) method and the HY zeolite were contrastively investigated for alkenylation of p-xylene with phenylacetylene in a fixed-bed continuous flow reactor. N2 adsorption-desorption, FT-IR, X-ray diffraction (XRD) and NH3 temperature-programmed (NH3-TPD) desorption characterization techniques were employed to explore the relationship of catalyst nature and catalytic performance in alkenylation. Results illustrate that the as-prepared HPW/MCM-41 catalyst exhibits notably superior catalytic activity, selectivity and stability to microporous HY zeolite, ascribed to its well-ordered mesoporous architecture, appropriate acidic sites and high dispersity of HPW phase.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

377-381

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura, Y. Fujiwara, Science 287 (2000) 1992-1995.

Google Scholar

[2] I.P. Beletskaya and A.V. Cheprakov, Chem. Rev. 100 (2000) 3009-3066.

Google Scholar

[3] J. Corbet, G. Mignani, Chem. Rev. 106 (2006) 2651-2710.

Google Scholar

[4] T. Tsuchimoto, T. Maeda, E. Shirakawa, Y. Kawakami, Chem. Commun. (2000) 1573-1574.

Google Scholar

[5] R. Li, S.R. Wang, W. Lu, Org. Lett. 9 (2007) 2219-2222.

Google Scholar

[6] M.Y. Yoon, J.H. Kim, D.S. Choi, U.S. Shin, J.Y. Lee, C.E. Song, Adv. Synth. Catal. 349 (2007) 1725-1737.

Google Scholar

[7] D.S. Choi, J.H. Kim, U.S. Shin, R.R. Deshmukh, C.E. Song, Chem. Commun. (2007) 3482-3484.

Google Scholar

[8] G. Sartori, F. Bigi, A. Pastorio, C. Porta, A. Arienti, R. Maggi, N. Moretti, G. Gnappi, Tetrahedron Lett. 36 (1995) 9177-9180.

DOI: 10.1016/0040-4039(95)01934-a

Google Scholar

[9] W. Ninomiya, M. Sadakane, S. Matsuoka, H. Nakamura, H. Naitou, W. Ueda, Green Chem. 11 (2009) 1666-1674.

Google Scholar

[10] P. Kamala, A. Pandurangan, Catal. Commun. 9 (2008) 2231-2235.

Google Scholar

[11] G. Karthikeyan, A. Pandurangan, J. Mol. Catal. A: Chem. 311 (2009) 36-45.

Google Scholar

[12] Y. Yamamoto, S. Hatanaka, K. Tsuji, K. Tsuneyama, R. Ohnishi, H. Imai, Y. Kamiya, T. Okuhara, Appl. Catal. A: Gen. 344 (2008) 55-60.

Google Scholar

[13] N.G. Waghmare, P. Kasinathan, S.B. Halligudi, Catal. Commun. 9 (2008) 2026-2029.

Google Scholar

[14] J.S. Beck, J.C. Vartuli, W.J. Roth, J.L. Schlenker, J. Am. Chem. Soc. 114 (1992) 10834-10843.

Google Scholar

[15] A.K. Jhingan, W.F. Maier, J. Org. Chem. 52 (1987) 1165-1167.

Google Scholar

[16] C. Lo, R. Cariou, C. Fischmeister, P.H. Dixneuf, Adv. Synth. Catal. 349 (2007) 546-550.

Google Scholar

[17] C.E. Song, D. Jung, S.Y. Choung, E.J. Roh, S. Lee, Angew. Chem. Int. Ed. 43 (2004) 6183-6185.

Google Scholar

[18] Q.H. Xia, K. Hidajat, S. Kawi, J. Catal. 209 (2002) 433-444.

Google Scholar

[19] D. Carriazo, C. Domingo, C. Martín, V. Rives, J. Solid State Chem. 181 (2008) 2046-2057.

Google Scholar

[20] B.C. Gagea, Y. Lorgouilloux, Y. Altintas, P.A. Jacobs, J.A. Martens, J. Catal. 265 (2009) 99-108.

Google Scholar