Effects of Concentration of TiOSO4 and Fe/TiO2 Ratio on TiO2 Anatase White Pigment Production via Short Sulfate Process

Article Preview

Abstract:

Using unconcentrated TiOSO4 solution from sulfate process as titanium source, anatase TiO2 white pigment was prepared by self-generating seed thermal hydrolysis route via short sulfate process. The effects of concentration of TiOSO4 solution and Fe/TiO2 ratio on the structure and pigment properties of the TiO2 white pigments were investigated. The samples were characterized by XRD, particle size distribution and pigment properties test. The concentration of TiOSO4 solution and Fe/TiO2 ratio had great effects on the super-saturation of TiO2+, crystal formation, nucleation, crystallization and aggregation process, eventually determined the crystal structure, particle size distribution and its pigment properties. The optimized concentration of TiOSO4 solution was of 195 g/L, and the Fe/TiO2 ratio was at 0.30.The as-prepared anatase white pigment was appropriate particle size, narrow particle size distribution and good pigment properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

391-396

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tioxide Group Limited: Manufacture and General Properties of Titanium Dioxide Pigments, London, 1992.

Google Scholar

[2] S. Karvinen, U.S. Patent 5,443,811. (1995)

Google Scholar

[3] A. Przepiera, J. Sosnowski: Przem. Chem. Vol. 77 (1998), p.328

Google Scholar

[4] K. Skudlarski: Prace Naukowe Instytutu Chemii Nieorganicznej i Metali Pierwiastków Rzadkich, Politechnika Wroclawska, 22. (1974)

Google Scholar

[5] Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH Verlag GmbH. (2002)

Google Scholar

[6] G. Wiederhöft, E. Bayer, W.D. Müller, G. Lailach, U.S. Patent 4,988,495 (1991)

Google Scholar

[7] E. Santacesaria, M. Tonello, G. Storti, R. C.Pace, S. Carra: J Colloid Interface Sci. Vol. 111 (1986), p.44

Google Scholar

[8] Z. L. Tang: Production and environmental treatment of titanium dioxide. Peking: Chem. Ind. Press (2000)

Google Scholar

[9] J. Z. Zhao, Z. C. Wang, L.W. Wang: Mater. Chem. Phy. Vol. 63(2000), p.9

Google Scholar

[10] W. Hixson, C.Ralphe: Ind. Eng. Chem. Vol. 37 (1945), p.678

Google Scholar

[11] H. Becker, E. Klein, H.Rechmann: Chem. Eng. J. Vol. 70(1964), p.779

Google Scholar

[12] R. G.Richards, J. F. Duncan: New Zeal. J. Sci. Vol. 19(1976), p.179

Google Scholar

[13] E.Santacesatia: J of Colloid Interf. Sci. Vol. 111 (1986), p.45

Google Scholar

[14] S. Sathyamoorthy, M. J. Hounslob, G. D.Moggridge: Journal of Cryst. Growth Vol. 223 (2001), p.225

Google Scholar

[15] B. U. Grzmil, D. Grela, B. Kic: Chemical Pap. Vol. 63 (2008), p.18

Google Scholar

[16] B. U.Grzmil, D.Grela, B. Kic: Pol. J. Chem. Technol. Vol. 11 (2009), p.15

Google Scholar

[17] I. Szilagyi, E. Konigsberger, P. M. May: Inorg. Chem. Vol. 48 (2009), p.2200

Google Scholar

[18] B. U. Grzmil, D. Grela, B. Kic: Chemical Pap. Vol. 63(2009), p.217

Google Scholar

[19] M. Sgraja, J. Blomer, J. Bertling, P. J. Jansens: Chem. Eng. J. Vol. 160(2000), p.351

Google Scholar

[20] SIR SOC ITAL RESINE SPA. F.R. Patent 2,309,472. (1976)

Google Scholar

[21] S. Sathyamoorthy, G. D. Moggridge, M. J. Hounslow: Cryst. Growth Des. Vol. 1 (2001), p.123

Google Scholar

[22] C. X. Tian, J. Q. Du, X. H. Chen, et al: Trans. Nonferrous Met. Soc. China Vol. S3(2009), p.829

Google Scholar

[23] K. J. Kim,A. Mersmann: Chem. Eng. Sci. Vol. 56(2001), p.2315

Google Scholar

[24] J. Ulrich,C. Strege: J. Crystal Growth Vol. 213-239(2002), p.2130

Google Scholar