La-ZrO2 and Ru-ZrO2 Promoted Co/SiO2 Catalysts for Fischer-Tropsch Synthesis

Article Preview

Abstract:

The performance of ZrO2-La promoted silica supported cobalt catalyst (100Co/15ZrO2/ 100Aerosil/0.66La) was compared to the ZrO2-Ru promoted one, 100Co/15ZrO2/100Aerosil/0.66Ru, in Fischer-Tropsch synthesis (FTS). These catalysts were prepared by co-precipitation and incipient wetness impregnation methods. The characterization by XRD confirmed the cobalt phase of Co3O4 in both catalysts. For their catalytic activity on FTS reaction, the results preliminarily showed the higher methane fraction (60-80%) and lower C2-C4 (10-20%) and C5+ (10-20%) fractions in ZrO2-La promoted catalyst compared to the fractions of methane (20-40%), C2-C4 (20-50%), and C5+(10-60%) from the ZrO2-Ru promoted catalyst. During reaction, the maximum n-paraffin selectivity of 40% was at C3 and the hydrocarbon chain was up to C6 for the ZrO2-La promoted catalyst. For the ZrO2-Ru promoted catalyst, the result showed the maximum n-paraffin of C3 at 30 min of reaction time. When the reaction time increased, the maximum n-paraffin selectivity shifted toward higher C number but levelled off (15%) and the hydrocarbon chain was up to C16.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

551-554

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Schulz: Appl. Catal. A. Vol. 189 (1999), p.3.

Google Scholar

[2] Q. Zhang, J. Kang and Y. Wang: ChemCatChem. Vol. 2 (2010), p.1030.

Google Scholar

[3] A.M. Subiranas. Combining Fischer-Tropsch synthesis (FTS) and hydrocarbon reactions in one reactor. Thesis, (2009).

Google Scholar

[4] Ø. Borg, N. Hammer, S. Eri, O.A. Lindvåg, R. Myrstad, E.A. Blekkan, M. Rønning, E. Rytter and A. Holmen: Catal. Today Vol. 142 (2009), p.70.

DOI: 10.1016/j.cattod.2009.01.012

Google Scholar

[5] Ø. Borg, E.A. Blekkan, S. Eri, D. Akporiaye, B. Vigerust, E. Rytter and A. Holmen: J. Catal. Vol. 248 (2007), p.89.

DOI: 10.1007/s11244-007-0237-4

Google Scholar

[6] S. J. Park, J. W. Bae, J. H. Oh, K. V. R. Chary and P. S. Sai Prasad: J. Mol. Catal. A: Chem. Vol. 298 (2009), p.81.

Google Scholar

[7] J. W. Bae, S. M. Kim, S. J. Park, Y. J. Lee, K. S. Ha and K. W. Jun: Catal. Commu. Vol. 11 (2010), p.834.

Google Scholar

[8] Z. Cai, J. Lia, K. Liew and J. Hu: J. Mol. Catal. A: Chem. Vol. 330 (2010), p.10.

Google Scholar

[9] A.Y. Khodakov, W. Chu and P. Fongarland: Chem. Rev. Vol. 107 (2007), p.1692.

Google Scholar

[10] M.R. Hemmati, M. Kazemeini, J. Zarkesh and F. Khorasheh: J. Taiwan Inst. Chem. Eng. Vol. 43 (2012), p.704.

Google Scholar

[11] A.N. Pour, S.M.K. Shahri, H.R. Bozorgzadeh, Y. Zamani, A. Tavasoli and M.A. Marvast: Appl. Catal. A. Vol. 348 (2008), p.201.

Google Scholar

[12] T. Wang, Y. Ding, Yuan Lü, H. Zhu and L. Lin: J. Nat. Gas Chem. Vol. 17 (2008), p.153.

Google Scholar

[13] S. Vada, B. Chen and J.G. Goodwin, Jr: J. Catal. Vol. 153 (1995), p.224.

Google Scholar

[14] H. Schulz, Z. Nie and F. Ousmanov: Catal. Today Vol. 71 (2002), p.351.

Google Scholar