Adsorption CO2 on Activated Carbon with Surface Modification

Article Preview

Abstract:

The success of CO2 capture from flue gas with solid sorbent is dependent of a low cost sorbent with high CO2 adsorption capacity and selectivity. Modifying surface texture of activated carbon with impregnating amines is expected to offer the benefits of liquid amines in the typical adsorption process routes. In this work, cocoanut activate carbon (AC) is firstly alkalified by KOH solution, then modified by impregnation of tetraethylenepentamine (TEPA), triethylenetetramine (TATA), and triethanolamine (TEA) to form a new type of sorbents. The effects of alkalifying treatment and temperature on CO2 adsorption capacities of the sorbents are investigated. Results indicate that the activate carbons modified by combining alkalification pretreatment firstly and then impregnated amines at low temperature are profitable for CO2 adsorption. The adsorption capacities of CO2 are enhanced with TEPA and TETA impregnation on the activate carbon pretreated by KOH solution. And CO2 adsorption capacity of new sorbents is stable after many adsorption and desorption cycles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

746-750

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York (NY, USA): Cambridge University Press. (2001).

DOI: 10.1080/01944363.2014.954464

Google Scholar

[2] D. P. Hagewiesche, S. S. Ashour, H. A. Al-Ghawas, O. C. Sandall: Chem. Eng. Sci. Vol. 50 (1995), p.1071.

Google Scholar

[3] M. K. Mavroudi, S. P. Aldis, G. P. Sakellaropoulos: Fuel. Vol. 82 (2003), p.2153.

Google Scholar

[4] R. V. Siriwardane, M. S. Shen, P. Fisher, J. A. Poston: Energy Fules. Vol. 15 (2001), p.279.

Google Scholar

[5] Y. Takamura, S. Narita, J. Aoki, S. Hironaka, S. Uchida: Technol. Vol. 24 (2001), p.519.

Google Scholar

[6] M. Wilson, P. Tontiwachwuthikul, Aidem, R. Chakma, A. Veawab, A. Aroonwilas, D. Gelowitz, J. Barrie, C. Mariz: Energy. Vol. 29 (2004), p.1259.

DOI: 10.1016/j.energy.2004.03.085

Google Scholar

[7] A. Arenillas, F. Rubiera, JB. Parra, CO. Ania, JJ. Pis: Appl Surf Sci. Vol. 252 (2005), p.619.

Google Scholar

[8] ML. Gray: Fuel Process Technol. Vol. 86 (2005), p.1449.

Google Scholar

[9] X. Xu, C. Song, J. M. Andresen, B. G. Miller, A. W. Scaroni: Micropor. Mesopor. Mater. Vol. 62 (2003) p.29.

Google Scholar

[11] F. Foeth, M. Andersson, G. Aly, T. Reith: Sep. Sci. Technol. Vol. 29 (1994), p.93.

Google Scholar

[12] M. M. Maroto-Vale, Z. Tang, Y. Zhang: Fuel Process. Technol. Vol 86 (2005), p.1487.

Google Scholar

[13] JB. Parra, JC. de Sousa, RC. Bansal, JJ. Pis, JA. Paiares: Adsorpt Sci Technol. Vol. 12 (1995), p.51.

Google Scholar

[14] A. Swiatkowski, M. Pakula, S. Blink, M. Walczyk: Carbon. Vol. 42 (2004), p.3057.

Google Scholar