Analysis of Synonymous Codon Usage Bias in D15 Gene Encoded Surface Antigen of Riemerella Anatipestifer

Article Preview

Abstract:

In order to provide a basis for understanding the evolutionary relationship and pathogenesis of Riemerella anatipestifer and selecting a appropriate host expression systems to improve the expression of target gene in vivo and in vitro, we identified the codon bias in the newly confirmed D15 gene of Riemerella anatipestifer ATCC 11845 strain and performed comparative analysis of the codon usage bias between D15 gene in R. anatipestifer and the other 10 referenced Flavobacteriaceaes by a series of online bioinformatics softwares. The results revealed that the synonymous codons with A and T at the third codon position had widely usage in the codon of D15 gene of R. anatipestifer. In addition, there were 70 rare codons in the ORF of the D15 of R. anatipestifer, and 32 codons showing distinct usage differences between R. anatipestifer and E. coli, 30 codons between R. anatipestifer and Homo sapiens, 16 codons between R. anatipestifer and yeast, indicated the yeast expression system may be more suitable for the expression of R. anatipestifer genes. The extent of codon usage bias in the D15 gene in R. anatipestifer was highly correlated with the gene expression level, therefore the results may provide useful information for gene classification and functional studies.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 641-642)

Pages:

597-605

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Grantham, C. Gautier, M. Gouy, R. Mercier, and A. Pave, Codon catalog usage and the genome hypothesis, Nucleic Acids Res. 8 (1980) 197.

DOI: 10.1093/nar/8.1.197-c

Google Scholar

[2] P.M. Sharp, M. Averof, A.T. Lloyd, G. Matassi, and J.F. Peden, DNA sequence evolution: the sounds of silence, Philos Trans R Soc Lond B Biol Sci. 349 (1995) 241–247.

Google Scholar

[3] L. Duret, Evolution of synonymous codon usage in metazoans, Curr Opin Genet Dev. 12 (2002) 640–649.

DOI: 10.1016/s0959-437x(02)00353-2

Google Scholar

[4] J. Ma, A. Campbell, and S. Karlin, Correlations between shine-dalgarno sequences and gene features such as predicted expression levels and operon structures, Journal of Bacteriology. 184 (2002) 5733–5745.

DOI: 10.1128/jb.184.20.5733-5745.2002

Google Scholar

[5] A. E. Walker, Synonymous codon bias is related to gene length in Escherichia coli: selection for translational accuracy? , Molecular Biology and Evolution. 13 (1996) 864–872.

DOI: 10.1093/oxfordjournals.molbev.a025646

Google Scholar

[6] M. Nakamura, and M. Sugiura, Translation efficiencies of synonymous codons are not always correlated with codon usage in tobacco chloroplasts, The Plant Journal. 49 (2007) 128–134.

DOI: 10.1111/j.1365-313x.2006.02945.x

Google Scholar

[7] J.B. Plotkin, J. Dushoff, M.M. Desai, and H.B. Fraser, Codon usage and selection on proteins, Jouranl of Molecular Evolution. 63 (2006) 635–653.

DOI: 10.1007/s00239-005-0233-x

Google Scholar

[8] S. Noboru, Two aspects of DNA base composition: G+C content and translation-coupled deviation from intra-strand rule of A = T and G = C, Journal of Molecular Evolution. 49 (1999) 49–62.

DOI: 10.1007/pl00006534

Google Scholar

[9] S. Kanaya, Y. Yamada, Y. Kudo, and T. Ikemura, Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and speciesspecific diversity of codon usage based on multivariate analysis, Gene. 238 (1999).

DOI: 10.1016/s0378-1119(99)00225-5

Google Scholar

[10] S. Noguchi, and Y. Satow, Purification of human β2-adrenergic receptor expressed in methylotrophic yeast Pichia pastoris, Journal of Biochemistry. 140 (2006) 799–804.

DOI: 10.1093/jb/mvj211

Google Scholar

[11] N. Sueoka, and Y. Kawanishi, DNA G+C content of the third codon position and codon usage biases of human genes, Gene. 261 (2000) 53–62.

DOI: 10.1016/s0378-1119(00)00480-7

Google Scholar

[12] X.F. Wan, D. Xu, A. Kleinhofs, and J.Z. Zhou, Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes, BMC Evolutionary Biology. 4 (2004) 19.

Google Scholar

[13] K. Sau, S.K. Gupta, S. Sau, and T.C. Ghosh, Synonymous codon usage bias in 16 Staphylococcus aureus phages: implication in phage therapy, Virus Research. 113 (2005) 123–231.

DOI: 10.1016/j.virusres.2005.05.001

Google Scholar

[14] P. Segers, W. Mannheim, M. Vancanneyt, K.D. Brandt, K.H. Hinz, K. Kersters, P. Vandamme, Riemerella anatipestifer gen. nov., comb. nov., the Causative Agent of Septicemia Anserum Exsudativa, and Its Phylogenetic Affiliation within the Flavobacterium-Cytophaga rRNA Homology Group, Int. J. Syst. Bacteriol. 43 (1993).

DOI: 10.1099/00207713-43-4-768

Google Scholar

[15] T.S. Sandhu. Riemerella anatipestifer Infection, in: Y.M. saif (Eds. ), Diseases of poultry, 12th ed Blackwell Publishing Ltd., Oxford, 2008, pp.758-764.

Google Scholar

[16] X.J. Wang, D.K. Zhu, M.S. Wang, A.C. Cheng, R.Y. Jia, Y. Zhou, Z.L. Chen, Q. H Luo, F. Liu, Y. Wang X.Y. Chen, Complete genome sequence of Riemerella anatipestifer reference strain, Journal of Bacteriology. 194 (2012) 3270-3271.

DOI: 10.1128/jb.00366-12

Google Scholar

[17] F. Wright, The effective number of codons used in a gene, Gene. 87 (1990) 23-29.

DOI: 10.1016/0378-1119(90)90491-9

Google Scholar

[18] P. M. Sharp, and W. H. Li, The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications, Nucleic. Acids. Res., 15 (1987) 1281-1295.

DOI: 10.1093/nar/15.3.1281

Google Scholar

[19] H. Sakai, T. Washio, R. Saito, A. Shinagawa, M. Itoh, K. Shibata, et al, Correlation between sequence conservation of the 5' untranslated region and codon usage bias in Mus musculus genes", Gene. 276 (2001) 101-105.

DOI: 10.1016/s0378-1119(01)00671-0

Google Scholar

[20] H. Lü, W.M. Zhao, Y. Zheng, H. Wang, M. Qi and X.P. Yu, Analysis of synonymous codon usage bias in Chlamydia, Acta Biochim Biophys Sin. 37 (2005) 1-10.

DOI: 10.1093/abbs/37.1.1

Google Scholar

[21] J. M. Comeron, and M. Aguade, An evaluation of measures of synonymous codon usage bias, J Mol Evol. 47 (1998) 268-274.

DOI: 10.1007/pl00006384

Google Scholar

[22] J. A. Novembre, Accounting for background nucleotide composition when measuring codon usage bias, Mol Biol Evol. 19 (2002) 1390-1394.

DOI: 10.1093/oxfordjournals.molbev.a004201

Google Scholar

[23] P. Jiang, X. Sun, Z.H. Lu, Analysis of synonymous codon usage in Aeropyrum pernix K 1 and other Crenarchaeota microorganisms, J Genet Genomics. 34 (2007) 275–84.

DOI: 10.1016/s1673-8527(07)60029-0

Google Scholar

[24] N. Sueoka, Directional mutation pressure, selective constraints, and genetic equilibria, Journal of Molecular Evolution. 34 (1992) 95-114.

DOI: 10.1007/bf00182387

Google Scholar

[25] W.J. Blake, M. Kaern, C.R. Cantor, and J.J. Collins, Noise in eukaryotic gene expression, Nature. 422 (2003) 633-637.

DOI: 10.1038/nature01546

Google Scholar

[26] Y.S. Liu, J.H. Zhou, and H.T. Chen, Analysis of synonymouscodon usage in porcine reproductive and respiratory syndrome virus, Infect. Genet. Evol. 10 (2010) 797–803.

Google Scholar

[27] J.H. Zhou, J. Zhang, and H.T. Chen, Analysis of synonymouscodon usage in foot-and-mouth disease, Vet. Res. Commun. 34 (2010) 393–404.

Google Scholar

[28] A. Lluis, B. Albert, and R.M. Pinto, Hepatitis A virus mutant spectra under the selective pressure of monoclonal antibodies: codon usage constrains limit capsid variability, J. Virol. 82 (2008) 1688–1700.

DOI: 10.1128/jvi.01842-07

Google Scholar

[29] A. Lluis, G. Susana, and R.M. Enric, Fine-tuning translation kinetics selection as the driving force of codon usage bias in the Hepatitis A virus capsid, PLoS Pathog. 6 (2010) e1000797.

DOI: 10.1371/journal.ppat.1000797

Google Scholar

[30] T. Zhou, X. Sun, and Z.H. Lu, Synonymous codon usage in environmental chlamydia UWE25 reflects an evolutional divergence from pathogenic chlamydiae, Gene. 368 (2006) 117-125.

DOI: 10.1016/j.gene.2005.10.035

Google Scholar

[31] H. S. Najafabadi, J. Lehmann, and M. Omidi. Error minimization explains the codon usage of highly expressed genes in Escherichia coli, Gene. 387 (2007) 150-155.

DOI: 10.1016/j.gene.2006.09.004

Google Scholar

[32] Q.P. Liu, S.J. Dou, Z.J. Ji, and Q.Z. Xue, Synonymous codon usage and gene function are strongly related in Oryza sativa, BioSystems. 80 (2005) 123–131.

DOI: 10.1016/j.biosystems.2004.10.008

Google Scholar