Analysis of Synonymous Codon Usage in the US5 Gene of Duck Plague Virus

Article Preview

Abstract:

The Duck Plague Virus (DPV) US5 gene was identified by constructing the DPV genomic library, the synonymous codon usage in the US5 gene of DPV and 11 reference herpesviruses have been investigated by using the CodonW 1.4 program, CUSP (create a codon usage table) program and CHIPS (calculated ENC value) of EMBOSS (The European Molecular Biology Open Software Suite). The results reveals that the synonymous codons with A and T at the third codon positon have widely usage in the codon of US5 gene of DPV. G + C compositional constraint is the main factor that determines the codon usage bias in US5 gene. In addition, rare condons analysis showed that there are 75 rare condons (13.9%) in the ORF of the DPV US5 gene on line (http//:www.kazusa.or.jp/codon), There were 20 codons showing distinct usage differences between DPV with Escherichia coli, 19 between DPV and yeast, 25 between DPV and Human. Therefore the yeast expression system may be suitable for the expression of DPV US5 gene.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 641-642)

Pages:

606-614

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Grantham, C. Gautier, M. Gouy, R. Mercier and A. Pave: Nucleic Acids Research Vol. 8 (1980), pp.49-62.

Google Scholar

[2] P.M. Sharp, E. Cowe and D.G. Higgins: Nucleic Acids Research Vol. 16 (1988), pp.8207-8211.

Google Scholar

[3] A. Fuglsang: Apmis Vol. 111 (2003), pp.843-847.

Google Scholar

[4] Q. Liu, S. Dou, Z. Ji and Q. Xue: Biosystems Vol. 80 (2005), pp.123-131.

Google Scholar

[5] J.M. Ma, T. Zhou, W.J. Gu, X. Sun and Z.H. Lu: Biosystems Vol. 65 (2002), pp.199-207.

Google Scholar

[6] J. Ma, M.N. Nguyen and J.C. Rajapakse: IEEE/ACM Transaction, Computational Biology Bioinformatics Vol. 6 (2009), pp.134-143.

Google Scholar

[7] G. Marais and L. Duret: Journal of Molecular Evolution Vol. 52 (2001), pp.275-280.

Google Scholar

[8] H. Miyasaka: Journal of Molecular Evolution Vol. 55 (2002), pp.52-64.

Google Scholar

[9] V. Scaiewicz, V. Sabbia, R. Piovani and H. Musto: Biochemical and Biophysical Research Communications Vol. 343 (2006), pp.1257-1261.

DOI: 10.1016/j.bbrc.2006.03.108

Google Scholar

[10] P.C. Woo, B.H. Wong, Y. Huang, S.K. Lau and K.Y. Yuen: Virology Vol. 369 (2007), pp.431-442.

Google Scholar

[11] J. Ma, A. Campbell and S. Karlin: Journal of bacteriology Vol. 184 (2002), pp.5733-5745.

Google Scholar

[12] A.W. Carrie, S. Yu and H. Johannesson: Genome Biology and Evolution Vol. 3 (2011), pp.332-343.

Google Scholar

[13] J.M. Comeron: Genetics Vol. 167 (2004), pp.1293-1304.

Google Scholar

[14] S. Noboru: Journal of Molecular Evolution, Spinger, New York Vol. 49 (1999), pp.49-62.

Google Scholar

[15] W. Gu, T. Zhou, J. Ma, X. Sun and Z. Lu: Biosystems Vol. 73 (2004), pp.89-97.

Google Scholar

[16] B. Kahali, S. Basak, T.C. Ghosh: Biochemical and Biophysical Research Communications Vol. 354 (2007), pp.693-699.

Google Scholar

[17] L. Duret: Trends in Genetics Vol. 16 (2000), pp.287-289.

Google Scholar

[18] S. Noguchi and Y. Satow: Journal of Biochemistry, Oxford University Press, New York Vol. 140 (2006), pp.799-804.

Google Scholar

[19] K. Sau, S.K. Gupta, S. Sau and T.C. Ghosh: Virus Research, Elsevier Ltd, Oxford Vol. 113 (2005), pp.123-231.

Google Scholar

[20] N. Sueoka and Y. Kawanishi: Gene, Elsevier Ltd, Oxford Vol. 26 (2000), pp.53-62.

Google Scholar

[21] X.F. Wan, D. Xu, A. Kleinhofs and J.Z. Zhou: BMC Evolutionary Biology, BioMed Central Ltd, England and Wales Vol. 4 (2004), p.19.

Google Scholar

[22] R. Versteeg, B.D. van Schaik, M.F. Van Batenburg, M. Roos, R. Monajemi, H. Caron, H.J. Bussemaker and A.H. van Kampen: Genome Res Vol. 13 (2003), p.1998-(2004).

DOI: 10.1101/gr.1649303

Google Scholar

[23] K. Sau and A. Deb: In Silico Biology Vol. 9 (2008), pp.1-9.

Google Scholar

[24] W.J. Gu, T. Zhou, J.M. Ma, X. Sun and Z.H. Lu: Biosystems Vol. 73 (2004), pp.89-97.

Google Scholar

[25] H. Grosjean and W. Fiers: Gene Vol. 18 (1982), pp.199-209.

Google Scholar

[26] G. Liu, J. Wu, H. Yang and Q. Bao: Comparative and functional genomics Vol. 2010 (2010), pp.343-569.

Google Scholar

[27] H. Gingold and Y. Pilpel: Molecular systems biology Vol. 12 (2011), p.481.

Google Scholar

[28] G.A. Palidwor, T.J. Perkins and X. Xia: PLoS One Vol. 5 (2010), p. e13431.

Google Scholar

[29] J.B. Plotkin and G. Kudla: Nature Reviews Genetics Vol. 12 (2010), pp.32-42.

Google Scholar

[30] P.M. Sharp, L.R. Emery and K. Zeng: Philosophical Transactions of the royal society B, Biological Sciences Vol. 365 (2010), pp.1203-1212.

Google Scholar

[31] X.R. Ma, S.B. Xiao, L.R. Fang, et al: Yi Chuan Xue Bao Vol. 32 (2005), pp.616-624.

Google Scholar

[32] M. Botzman and H. Margalit: Genome Biology Vol. 12 (2011), p. R109.

Google Scholar

[33] Y.M. Saif: Diseases of Poultry (Blackwell Publishing, Ames, Iowa 2008).

Google Scholar

[34] X.Y. Yang, X.F. Qi, A.C. Cheng, M.S. Wang, D.K. Zhu, R.Y. Jia and X.Y. Chen: The Veterinary Journal Vol. 185 (2010), pp.199-203.

Google Scholar

[35] A.C. Cheng, M.S. Wang, M. Wen, W.G. Zhou, Y.F. Guo, R.Y. Jia, C. XU, G.P. Yuan and Y.C. Liu: High. Technol. Lett Vol. 16 (2006), pp.948-953.

Google Scholar

[36] L.C. Zhao, A.C. Cheng, M.S. Wang, G. P. Yuan and M. S. Cai: Prog Nat Sci Vol. 18 (2008), pp.1069-1076.

Google Scholar

[37] H. Chang, A.C. Cheng, M.S. Wang, X. Wei, K. P. Lou, M. S. Cai, et al: IEEE, the 2nd International Conference on BioMedical Engineering and Informatics Vol. 4 (2009), pp.1836-1841/1874.

Google Scholar

[38] Y. Zhang, A.C. Cheng, M.S. Wang, D.K. Zhu, R.Y. Jia, F. Liu, et al: IEEE, the 2nd International Conference on BioMedical Engineering and Informatics Vol. 4 (2009), pp.1829-1835.

Google Scholar

[39] S.C. Zhang, A.C. Cheng and M.S. Wang: IEEE, The 4th International Conference on Bioinformatics and Biomedical Engineering (2010), pp.1-9.

Google Scholar

[40] M.S. Cai, A.C. Cheng and M.S. Wang: Intervirology Vol. 52 (2009), pp.266-278.

Google Scholar

[41] Q. He, A.C. Cheng and M.S. Wang: Information Technology and Agricultural Engineering Vol. 134 (2012), pp.747-760.

Google Scholar

[42] R.Y. Jia, A.C. Cheng and M.S. Wang: Virus Genes Vol. 38 (2009), pp.96-103.

Google Scholar

[43] F.J. Li, A.C. Cheng and M.S. Wang: Advanced Materials Reserch Vol. 424-425 (2012), pp.680-689.

Google Scholar

[44] X.X. Hu, A.C. Cheng, M.S. Wang: Advanced Materials Reserch Vol. 393-395 (2011), pp.641-650.

Google Scholar

[45] F. Wright: Gene Vol. 87 (1990), pp.23-29.

Google Scholar

[46] H. Lu, W.M. Zhao, Y. Zheng, H. Wang, M. Qi and X. P. Yu: Acta Biochimica et Biophysica Sinica, Shanghai inst biochemistry, academia sinica, Shanghai Vol. 37 (2005), pp.1-10.

Google Scholar

[47] J.A. Novembre: Molecular Biology and Evolution, Oxford University Press, Oxford Vol. 19 (2002), pp.1390-1394.

Google Scholar

[48] H.S. Najafabadi, J. Lehmann and M. Omidi: Gene, Elsevier Science, Amsterdam Vol. 387 (2007), pp.150-155.

Google Scholar

[49] H. Sakai, T. Washio, R. Saito et al: Gene Vol. 276 (2001), pp.101-105.

Google Scholar

[50] J. Lobry and C. Gautier: Nucleic Acids Research Vol. 22 (1994), pp.3174-3180.

Google Scholar