[1]
D. Gupta, S. K. Gupta. Single facility scheduling with nonlinear processing times. Comput. Ind. Eng. Vol. 14 (1988), pp.387-393.
DOI: 10.1016/0360-8352(88)90041-1
Google Scholar
[2]
S. Browne, U. Yechiali. Scheduling deteriorating jobs on a single processor. Oper. Res. Vol. 38 (1990), pp.495-498.
DOI: 10.1287/opre.38.3.495
Google Scholar
[3]
A. Bachman, T. C. E. Cheng, A. Janiak, C. T. Ng. Scheduling start time dependent jobs to minimize the total weighted completion time. J. Oper. Res. Soc. Vol. 53 (2002), pp.688-693.
DOI: 10.1057/palgrave.jors.2601359
Google Scholar
[4]
T. C. E. Cheng, Q. Ding. Single machine scheduling with step-deteriorating processing times. Eur. J. Oper. Res. Vol. 134 (2001), pp.623-630.
DOI: 10.1016/s0377-2217(00)00284-8
Google Scholar
[5]
P-J Lai, W-C Lee. Single-machine scheduling with a nonlinear deterioration function. Inf. Process. Lett. Vol. 110 (2011), pp.455-459.
Google Scholar
[6]
T. C. E. Cheng, W-C Lee, C-C Wu. Single-machine scheduling with deteriorating functions for job processing times. Appl. Math. Model. Vol. 34 (2010), pp.4171-4178.
DOI: 10.1016/j.apm.2010.04.014
Google Scholar
[7]
J-B Wang, C. Wang. Single-machine due-window assignment problem with learning effect and deteriorating jobs. Appl. Math. Model. Vol. 35 (2011), pp.4017-4022.
DOI: 10.1016/j.apm.2011.02.023
Google Scholar
[8]
C-L Zhao, C-J Hsu, D-L Yang. Considerations of single-machine scheduling with deteriorating jobs. Appl. Math. Model. Vol. 35 (2011), pp.5134-5142.
DOI: 10.1016/j.apm.2011.04.018
Google Scholar
[9]
Wang, C-M Wei. Parallel machine scheduling with a deteriorating maintenance activity and total absolute differences penalties. Appl. Math. Comput. Vol. 217 (2011), pp.8093-8099.
DOI: 10.1016/j.amc.2011.03.010
Google Scholar
[10]
heng, W-H Wu, S-R Cheng, C-C Wu. Two-agent scheduling with position-based deteriorating jobs and learning effects. Appl. Math. Comput. Vol. 217 (2011), pp.8804-8824.
DOI: 10.1016/j.amc.2011.04.005
Google Scholar
[11]
Ng, S. Li, T. C. E. Cheng, J. Yuan. Preemptive scheduling with simple linear deterioration on a single machine. Theor. Comput. Sci. Vol. 411 (2011), pp.3578-3586.
DOI: 10.1016/j.tcs.2010.05.032
Google Scholar
[12]
sheiov, J. B. Sidney. Scheduling a deteriorating maintenance activity on a single machine. J. Oper. Res. Soc. Vol. 61 (2010), pp.882-887.
Google Scholar
[13]
E. Cheng, Q. Ding. The complexity of single machine scheduling with release times. Inf. Process. Lett. Vol. 65 (1998), pp.75-79.
Google Scholar
[14]
Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan. Optimization and approximation in the deterministic sequencing and scheduling: a survey. Ann. Discret. Math. Vol. 5 (1979), pp.287-326.
DOI: 10.1007/978-94-009-7801-0_3
Google Scholar
[15]
C-C Wu, Y-H Chung. Scheduling deteriorating jobs on a single machine with release times. Comput. Ind. Eng. Vol. 54 (2008), pp.441-452.
DOI: 10.1016/j.cie.2007.08.006
Google Scholar
[16]
Chu. A branch-and-bound algorithm to minimize total flow time with unequal release dates. Nav. Res. Logist. Vol. 39 (1992), pp.859-875.
DOI: 10.1002/1520-6750(199210)39:6<859::aid-nav3220390610>3.0.co;2-w
Google Scholar