Synthesis and Characterization of Nanocrystalline MgO for Optical Applications Using Sol-Gel Method

Article Preview

Abstract:

This paper describes the preparation and characterization of nanocrystalline Magnesium Oxide (MgO) using sol-gel technique for optical applications. The prepared nanocrystalline MgO was chemically homogeneous, very pure and specifically hydroxylated and was characterized by standard techniques. The size of the prepared nanoparticle was found to be 27.38 nm ± 0.65 nm and exhibited a face centered–cubic structure and exhibited two lifetimes viz., 1 = 0.24 ns and 2 = 8.9 ns. Its binding energy was found to be 50.9 eV, which showed the formation of single phase MgO on the surface. It behaved as semiconductor over the temperature range of 500 °C to 660 °C and as perfect insulator in the temperature range 100 °K to 300 °K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-83

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. S. Yuan, M. S. Wong and S. S. Wang: Journal of Materials Research Vol. 11 (1996), No. 6, pp.1373-1382.

Google Scholar

[2] D. Dobischek, H. Jacobs and J. Freely: Physical Review Vol. 91 (1953), No. 4, pp.804-812.

Google Scholar

[3] S. H. C . Liang. and I. D. Gay: Journal of Catalysis, Vol. 101(1986), No. 2, pp.293-300.

Google Scholar

[4] P. Yang and C. M. Lieber: Science Vol. 273 (1996), No. 5283, pp.1836-40.

Google Scholar

[5] A. N. Copp: J. of American ceramic society Bulletin Vol. 74 (1995), No. 6, pp.135-137.

Google Scholar

[6] X. Gerbaux, A. Hadni, M. Tazawa and J. C. Villegier: Appl. Optics Vol. 33 (1994), No. 1, pp.57-59.

DOI: 10.1364/ao.33.000057

Google Scholar

[7] S. Andoh, K. Murase, S. Umeda: IEEE Transations on electron devices Vol. 23 (1976), No. 3, pp.319-324.

Google Scholar

[8] S. G. Kim, J. Y. Kim and H. J. Kim: Thin Solid FilmsVol. 376 (2000), No. 1-2, pp.110-114.

Google Scholar

[9] J. P. Boeuf: Journal of Physics D: Applied Physics Vol. 36 (2003), No. 6, p. R53.

Google Scholar

[10] T. Urade, T. Iemori,    M. Osawa,    N. Nakayama,    I. Morita: IEEE Trans. Electron Devices Vol. 23 (1976), No. 3, pp.313-318.

DOI: 10.1109/t-ed.1976.18397

Google Scholar

[11] S. G. MacLean and W. W. Duley: Journal of Physics and Chemistry of Solids Vol. 45 (1984), No. 2, pp.223-225.

Google Scholar

[12] P. Vuoristo, T. Mantyla, P. Kettunen: J. Vac. Sci. Technol. A Vol. 4 (1986), No. 6, pp.2932-2937.

Google Scholar

[13] D. K. Fork, F. A. Ponce, J. C. Tramontana: Appl. Phys. Lett. Vol. 58 (1991), No. 20, pp.2294-2296.

Google Scholar

[14] T. Edwards, D. Walsh, M. Spurr, C. Rae, M. Dunn and P. Browne: Opt. Express Vol. 14 (2006), No. 4, pp.1582-89.

DOI: 10.1364/oe.14.001582

Google Scholar

[15] D. Grischkowsky, S. Keiding, M. V. Exter and C. Fattinger: J. Opt. Soc. Am. B Vol. 7 (1990), No. 10, pp.2006-15.

Google Scholar

[16] W. Gallagher: J. Appl. Phys Vol. 81 (1997), No. 8, p.3741.

Google Scholar

[17] J. Daughton: J. Appl. Phys. Vol. 81 (1997), No. 8, p.3758.

Google Scholar

[18] P. M. Levy and A. Fert: Physical Review B Vol. 74 (2006), No. 22, p.224446.

Google Scholar

[19] L.W. Tutt and T. F. Boggess: Progress in Quantum Electronics, Vol. 17 (1993), No. 4, pp.299-338.

Google Scholar

[20] S. Ardizzone, C.L. Bianchi, M. Fadoni and B. Vercelli: Applied Surface Science Vol. 119 (1997), No. 3-4, p.253 – 259.

DOI: 10.1016/s0169-4332(97)00180-3

Google Scholar

[21] C. D. Wagner, L. E. Davis, J.E. Moulder. and G. E. Muilenberg: Hand book of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Physical Electronics Division, printed in USA, Minnesota 55344, (1979).

Google Scholar