Erythrocyte Rheology in a Symmetrically Constricted Microchannel

Article Preview

Abstract:

This paper presents a fluid-cell interaction algorithm using the immersed boundary coupled fictitious domain method. We discuss the application of this method to the numerical investigation of motion and deformation of erythrocytes in two-dimensional stenotic microvessels. The erythrocytes are modeled as biconcave-shaped closed membranes filled with cytoplasm. Simulation results of multiple erythrocytes traversing the stenosis in Poiseuille flow are presented. This algorithm is applicable to a large class of problems involving fluid flow with complex geometry and fluid-cell interactions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

293-298

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. L. McWhirter, H. Noguchi and G. Gompper, PNAS Vol. 106 (2009), p.6039.

Google Scholar

[2] M. Dao, C.T. Lim and S. Suresh, J. Mech. Phys. Solids Vol. 51 (2003) p.2259.

Google Scholar

[3] K. Vahidkhah and N. Fatouraee, Int. J. Numer. Meth. Biomed. Engng. Vol. 28 (2012), p.239.

Google Scholar

[4] J. Li, G. Lykotrafitis, M. Dao and S. Suresh, PNAS Vol. 104 (2007), p.4937.

Google Scholar

[5] H. Noguchi, G, Gompper, L. Schmid, A. Wixforth and T. Franke, EPL Vol. 89 (2010), p.28002.

DOI: 10.1209/0295-5075/89/28002

Google Scholar

[6] R. Skalak, Science Vol. 164 (1969), p.717.

Google Scholar

[7] Y. Suzuki, N. Tateishi, M. Soutani and N. Maeda, Microcirculation Vol. 3 (1996), p.49.

Google Scholar

[8] R. Glowinski, T. -W. Pan and J. Periaux, Comp. Meth. Appl. Mech. Eng. Vol. 111 (1994), p.283.

Google Scholar

[9] R. Glowinski, T. -W. Pan and J. Periaux, Comp. Meth. Appl. Mech. Eng. Vol. 112 (1994), p.133.

Google Scholar

[10] C. S. Peskin, J. Comput. Phys. Vol. 25 (1977), p.220.

Google Scholar

[11] P. Bagchi, Biophys. J. Vol. 92 (2007), p.1858.

Google Scholar

[12] Y. Liu and W. K. Liu, J. Comput. Phys. Vol. 220 (2006), p.139.

Google Scholar

[13] K. Tsubota, S. Wada and T. Yamaguchi, J. Biomech. Sci. Eng. Vol. 1 (2006), p.159.

Google Scholar

[14] T. Wang, T. -W. Pan, Z. Xing and R. Glowinski, Phys. Rev. E. Vol. 79 (2009), p.041916.

Google Scholar