[1]
Yang, S., et al., The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Engineering, 2002. 8(1): pp.1-11.
DOI: 10.1089/107632702753503009
Google Scholar
[2]
Chua, C., W. Yeong, and K. Leong, Rapid prototyping in tissue engineering: a state-of-the-art report. Virtual Modelling and Rapid Manufacturing, (2005).
Google Scholar
[3]
Peltola, S.M., et al., A review of rapid prototyping techniques for tissue engineering purposes. Annals of medicine, 2008. 40(4): pp.268-280.
DOI: 10.1080/07853890701881788
Google Scholar
[4]
Yan, Y., et al., Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends. Tsinghua Science & Technology, 2009. 14: pp.1-12.
DOI: 10.1016/s1007-0214(09)70059-8
Google Scholar
[5]
Yeong, W.Y., et al., Rapid prototyping in tissue engineering: challenges and potential. TRENDS in Biotechnology, 2004. 22(12): pp.643-652.
DOI: 10.1016/j.tibtech.2004.10.004
Google Scholar
[6]
Russias, J., et al., Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation. Materials Science and Engineering: C, 2006. 26(8): pp.1289-1295.
DOI: 10.1016/j.msec.2005.08.004
Google Scholar
[7]
Kricheldorf, H.R., Syntheses and application of polylactides. Chemosphere, 2001. 43(1): pp.49-54.
DOI: 10.1016/s0045-6535(00)00323-4
Google Scholar
[8]
Higashi, S., et al., Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials, 1986. 7(3): pp.183-187.
DOI: 10.1016/0142-9612(86)90099-2
Google Scholar
[9]
Wang, M., et al., A dual microsphere based on PLGA and chitosan for delivering the oligopeptide derived from BMP-2. Polymer Degradation and Stability, 2011. 96(1): pp.107-113.
DOI: 10.1016/j.polymdegradstab.2010.10.010
Google Scholar
[10]
Lee, J.H., J.W. Park, and H.B. Lee, Cell adhesion and growth on polymer surfaces with hydroxyl groups prepared by water vapour plasma treatment. Biomaterials, 1991. 12(5): pp.443-448.
DOI: 10.1016/0142-9612(91)90140-6
Google Scholar
[11]
Rezwan, K., et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(18): pp.3413-3431.
DOI: 10.1016/j.biomaterials.2006.01.039
Google Scholar
[12]
Landers, R., et al., Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 2002. 23(23): pp.4437-4447.
DOI: 10.1016/s0142-9612(02)00139-4
Google Scholar
[13]
Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996. 84(3): p.345.
DOI: 10.1016/s0092-8674(00)81279-9
Google Scholar
[14]
Ghosh, D. and J. Sengupta, Molecular mechanism of embryo-endometrial adhesion in primates: a future task for implantation biologists. Molecular human reproduction, 1998. 4(8): pp.733-735.
DOI: 10.1093/molehr/4.8.733
Google Scholar
[15]
Hersel, U., C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003. 24(24): pp.4385-4415.
DOI: 10.1016/s0142-9612(03)00343-0
Google Scholar
[16]
Hallab, N., et al., Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein, and cell morphology. Journal of long-term effects of medical implants, 1995. 5(3): p.209.
Google Scholar
[17]
Anselme, K., Osteoblast adhesion on biomaterials. Biomaterials, 2000. 21(7): pp.667-681.
DOI: 10.1016/s0142-9612(99)00242-2
Google Scholar
[18]
Zhang, R. and P.X. Ma, Poly (α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. (1999).
Google Scholar
[19]
Burg, K.J.L., S. Porter, and J.F. Kellam, Biomaterial developments for bone tissue engineering. Biomaterials, 2000. 21(23): pp.2347-2359.
DOI: 10.1016/s0142-9612(00)00102-2
Google Scholar