[1]
T. Cardi, P. Lenzi, P. Maliga (2010) Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 9: 893–911.
DOI: 10.1586/erv.10.78
Google Scholar
[2]
S. J. Stratified (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5: 2-15.
Google Scholar
[3]
B. A. Rasala, S. P. Mayfield (2011) The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng Bugs 2: 50-54.
DOI: 10.4161/bbug.2.1.13423
Google Scholar
[4]
S. P. Mayfield, et al (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 18: 126-133.
Google Scholar
[5]
B. A. Rasala, et al (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8: 719–733.
DOI: 10.1111/j.1467-7652.2010.00503.x
Google Scholar
[6]
R. Surzycki, et al (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37: 133–138.
DOI: 10.1016/j.biologicals.2009.02.005
Google Scholar
[7]
A. Coragliotti, et al (2011) Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol Biotechnol 48: 60-75.
DOI: 10.1007/s12033-010-9348-4
Google Scholar
[8]
C. M. Hutchinsa (2010) Transcriptomic signatures in Chlamydomonas reinhardtii as Cd biomarkers in metal mixtures. Aquat Toxicol 100: 120–127.
DOI: 10.1016/j.aquatox.2010.07.017
Google Scholar
[9]
D. Tolleter, et al (2011) Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23 : 2619-2630.
DOI: 10.1105/tpc.111.086876
Google Scholar
[10]
S. Mayfield, S. Franklin, R. Lerner (2003) Expression and assembly of a fully active antibody in algae. Proc Nat Acad Sci 100: 438-442.
DOI: 10.1073/pnas.0237108100
Google Scholar
[11]
B. A. Rasala, et al (2012) Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide. PLoS One 7 : e43349.
DOI: 10.1371/journal.pone.0043349
Google Scholar
[12]
S. Rosales-Mendoza, L. M. Paz-Maldonado, R. E. Soria-Guerra. (2012) Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep 31: 479-94.
DOI: 10.1007/s00299-011-1186-8
Google Scholar
[13]
X. Wang, et al (2008) A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol 8: 87.
DOI: 10.1186/1472-6750-8-87
Google Scholar
[14]
E. S. Alke, et al (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229: 873-83.
DOI: 10.1007/s00425-008-0879-x
Google Scholar
[15]
J. A. Gregory, et al (2012) Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One 7: e37179.
DOI: 10.1371/journal.pone.0037179
Google Scholar
[16]
E. Specht, M. S. Shigeki, S. P. Mayfield (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32: 1373–1383.
DOI: 10.1007/s10529-010-0326-5
Google Scholar
[17]
A. L. Manuell, et al (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 5: 402-412.
Google Scholar
[18]
L. Michelet, et al (2011) Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. Plant Biotechnol J 9: 565-574.
DOI: 10.1111/j.1467-7652.2010.00564.x
Google Scholar
[19]
J. E. Maul, et al (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14: 2659-2679.
DOI: 10.1105/tpc.006155
Google Scholar
[20]
A.R. Grossman, et al (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2: 1137-1150.
Google Scholar
[21]
D. Dauvillee, et al (2010) Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS ONE 5: e15424.
DOI: 10.1371/journal.pone.0015424
Google Scholar