[1]
P. perona, J. Malik. Scale Space and Edge Detection Using Anisotropic Diffusion. Proc. IEEE Comp. Soc. Workshop on Computer Vision, IEEE Computer Society Press, Washington, 16-22, (1987).
Google Scholar
[2]
Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[ J ]. Physica D, 1992, 60: 259- 268.
DOI: 10.1016/0167-2789(92)90242-f
Google Scholar
[3]
Lysaker M, Lundervold A, Tai X C. Noise removal using fourth- order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2003, 12( 12) : 1579- 1590.
DOI: 10.1109/tip.2003.819229
Google Scholar
[4]
Frederic Guichard and Jean-Michel Morel. Partial Differential Equations and Image Iterative Filtering. Oct., (1995).
Google Scholar
[5]
L. Alvarez, F. Guichard, P-L. Lions, J. -M. Axioms and fundamental equations in image processing. Morel. Arch. Rational Mech. Anal. Vo1. 123, 199-257, (1993).
DOI: 10.1007/bf00375127
Google Scholar
[6]
A. Witkin. Scale-space Filtering. Int. Joint Conof. On AL, Karlsruhe, 1983: 1019-1022.
Google Scholar
[7]
P. Charbonnier, L. Blanc-Feraud, G. Aubert, M. barland. Two deterministic half-quadratic regularization algorithms for computed image. Proc. IEEE Int. Conf. Image Processing, Vo1. 2, IEEE Computer Society Press, Los Alamitos, 168-172, (1994).
DOI: 10.1109/icip.1994.413553
Google Scholar
[8]
B. Fischl E.L. Schwartz. Adaptive Nonlinear Filtering for Nonlinear Diffusion Approximation in Image Processing. Proc. 13th Int. Conf. Pattern Recognition, Vol. D, 276-280, (1996).
DOI: 10.1109/icpr.1996.547430
Google Scholar
[9]
G. -H. Cottet, L. Germain. Image Processing through Reaction Combined with nonlinear Diffusion. Math. Comp., Vo1. 61,659-673, (1993).
DOI: 10.1090/s0025-5718-1993-1195422-2
Google Scholar
[10]
G. -H. Cottet, M. EL Ayyadi. Nonlinear PDE Operators with Memory terms for Image Processing. Proc. IEEE Int. Conf. Image Processing, Vol. l,481-483, (1996).
DOI: 10.1109/icip.1996.559538
Google Scholar
[11]
F Catte, P L Lions, J M Morel et al. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIAM J Num Anal, 1992; 29(1) : 182~193.
DOI: 10.1137/0729012
Google Scholar
[12]
Guy Gilboa, Yehoshua Y. Zeevi, Nir A. Sochen. Resolution Enhancement by Forward and Backward Nonlinear Diffusion Processes.
Google Scholar
[13]
Guy Gilboa, Nir A. Sochen Y. Zeevi. Forward and Backward Diffusion Processes for Adaptive Image Enhancement and Denosing. IEEE Transactions on Image Processing. 2002 Vol. l 1(7), 689703.
DOI: 10.1109/tip.2002.800883
Google Scholar
[14]
Guy Gilboa, Yehoshua Y. Zeevi, Nir A. Sochen. Image Enhancement Segmentation and Denoising by Time Dependent Nonlinear Diffusion Processes.
DOI: 10.1109/icip.2001.958069
Google Scholar
[15]
Lysaker M, Lundervold A, Tai X C. Noise removal using fourth- order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2003, 12( 12) : 1579- 1590.
DOI: 10.1109/tip.2003.819229
Google Scholar
[16]
You Y L, Kaveh M. Fourth - order partial differential equation for noise removal[J]. IEEE Transactions on Image Processing, 2000, 9( 10) : 1723- 1730.
DOI: 10.1109/83.869184
Google Scholar
[17]
Lysaker M, Osher S, Tai X C. Noise removal using smoothed normal and surface fitting[J]. IEEE Transactions on Image Processing, 2004, 13( 10) : 1345- 1357.
DOI: 10.1109/tip.2004.834662
Google Scholar
[18]
Osher S, Sole A, Vese L. Image decomposition and restoration using total variation minimization and the H-1 rm[J]. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2003, 1( 3) : 349-370.
DOI: 10.1137/s1540345902416247
Google Scholar
[19]
Greer J B, Bertozzi A L. H1 solutions of a class of fourth order nonlinear equations for image processing[C]/Chepyzhov V, Efendiev M, Miranville A, et al. Discrete and Continuous Dynamical Systems 2004: Special Issue in Honor of Mark Vishik, 2004, 1- 2( 10) : 349-366.
DOI: 10.3934/dcds.2004.10.349
Google Scholar
[20]
Greer J B, Bertozzi A L. Traveling wave solutions of fourth order PDE for image processing[R]. Tech Report( 03- 25) , UCLA, Applied mathematics, (2003).
Google Scholar
[21]
Bertozzi A L, Greer J B. Low curvature image simplifiers: global regularity of smooth solutions and laplacian limiting schemes[R]. Tech report( 03- 26) , UCLA, Applied Mathematics, (2003).
DOI: 10.1002/cpa.20019
Google Scholar
[22]
Yu-Li You, Wenguan Xu, Allen Tannenbaum and Mostafa Kaveh, Behavioral analysis of anisotropic diffusion in image processing, IEEE Trans. Image Processing, vol. 5, No. 11, 1996, pp.1539-1553.
DOI: 10.1109/83.541424
Google Scholar
[23]
Yu-Li You, M. Kaveh, Fourth order partial differential equations for noise removal, IEEE Trans. Image Processing, vol. 9, No. 10, 2000, pp.1723-1730.
DOI: 10.1109/83.869184
Google Scholar
[24]
T. Chan, A. Marquina, and P. Mulet. High-order total variation based image restoration. SIAM J. Sci. Comp., 22(2), 2000, pp.503-516.
DOI: 10.1137/s1064827598344169
Google Scholar
[25]
P. V. Blomgren and T. F. Chan. Modular Solvers for Constrained Image Restoration Problems. Technical report, UCLA Dept. of lhlath., CAM 97-52. (1997).
Google Scholar