Optical Triode Based on Electrically Induced Quadratic Cascading in an Optical Superlattice

Article Preview

Abstract:

×Χ×We demonstrate here an optical triode from the principle of electrically induced quadratic cascading in single lithium niobate optical superlattice, predicted by the united theory of second-harmonic generation/parametric down conversion and electro-optic effect. In the optical superlattice, the e-polarized fundamental wave is first converted to double frequency one with the same polarization. At the “on” state, the PDC after SHG is triggered by a weak o-polarized fundamental wave (control wave) with the aid of applied electric field at the point where fundamental wave almost exhausted; finally, the double frequency wave is converted again to e-polarized fundamental one as high output. And when the control wave is absent, only the SHG takes place; fundamental output is at “off” state. The optical triode would have a response shorter than ps and a amplification ratio of 2*103

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-397

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, G. Assanto: Opt. Lett. Vol. 18 (1993), p.13.

DOI: 10.1364/ol.18.000013

Google Scholar

[2] D.J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland: Opt. Lett. Vol. 19 (1994), p.1305.

Google Scholar

[3] G. Assanto and I. Torelli: Opt. Commun. Vol. 119 (1995), p.143.

Google Scholar

[4] G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland: Appl. Phys. Lett. Vol. 67 (1995), p.2120.

Google Scholar

[5] Z. Wang, D.J. Hagan, E. W. Van Stryland, and G. Assanto: Electron. Lett. Vol. 32 (1996), p.1135.

Google Scholar

[6] L. Lefort and A. Barthelemy: Electron. Lett. Vol. 31 (1995), p.910.

Google Scholar

[7] S. Saltiel and Y. Deyanova: Opt. Lett. Vol. 24 (1999), p.1296.

Google Scholar

[8] A. Kobyakov, U. Peschel, R. Muschall, G. Assanto, V. P. Torchigin, and F. Lederer: Opt. Lett. Vol. 20 (1995), p.1686.

DOI: 10.1364/ol.20.001686

Google Scholar

[9] G. I. Petrov, O. Albert, N. Minkovski, J. Etchepare, and S. M. Saltiel: J. Opt. Soc. Am. B Vol. 19 (2002), p.268.

Google Scholar

[10] A. De Rossi, C. Conti, and G. Assanto: Opt. and Quantum Electron. 29 (1997), p.53.

Google Scholar

[11] A. D'Orazio, M. Desario, V. Petruzzelli, and F. Prudenzano: Opt. and Quantum Electron. Vol. 35 (2003), p.47.

Google Scholar

[12] A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger: Opt. Commun. Vol. 142 (1997), p.265.

DOI: 10.1016/s0030-4018(97)00338-6

Google Scholar

[13] G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer: Opt. Lett. Vol. 22 (1997), p.1834.

DOI: 10.1364/ol.22.001834

Google Scholar

[14] S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson: Opt. Lett. Vol. 23 (1998), p.1883.

Google Scholar

[15] I. Yokohama, M. Asobe, A. Yokoo, H. Itoh, and T. Kaino: J. Opt. Soc. Am. B Vol. 14 (1997), p.3368.

Google Scholar

[16] L. E. Myers and W. R. Bosenberg: IEEE J. Quantum Electron. Vol. 33 (1997), p.1663.

Google Scholar

[17] K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, F. Laurell: J. Opt. Soc. Am. B 14 (1997), p.3197.

DOI: 10.1364/josab.14.003197

Google Scholar

[18] M. Fujimura, T. Suhara, and H. Nishihara: Bull. Mater. Sci. Vol. 22 (1999), p.413.

Google Scholar

[19] S. Zhu, Y. Zhu, and N. Ming: Science Vol. 278 (1997), p.843.

Google Scholar

[20] C. Zhang, H. Wei, Y. Zhu, H. Wang, S. Zhu and N. Ming: Opt. Lett. Vol. 26 (2001), p.899.

Google Scholar

[21] C. J. K. Virmani: Plasma Phys. Vol. 15 (1973), p.1039.

Google Scholar

[22] G. Blau, M. Cairone, P. A. Chollet, F. Kajzar: Proc. SPIE Vol. 2852 (1996), p.237.

Google Scholar

[23] N. O'Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler: Opt. Lett. Vol. 24 (1999), p.1750.

Google Scholar

[24] K. Chang, A. Chiang, T. Lin, B. Wong, Y. Chen, and Y. Huang: Opt. Commun. Vol. 203 (2002), p.163.

Google Scholar

[25] Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen: Opt. Commun. Vol. 223 (2003), p.417.

Google Scholar

[26] F. Xu, J. Liao, X. Zhang, J. He, H. Wang, N. Ming Phys. Rev. A Vol. 68 (2003), p.033808.

Google Scholar

[27] F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, N. Ming: Opt. Lett. Vol. 28 (2003), p.429.

Google Scholar

[28] C. Huang, Q. Wang, Y. Zhu: Appl. Phys. B Vol. 80 (2005), p.741.

Google Scholar

[29] G. A. Wurtz, R. Pollard, and A. V. Zayats: Phys. Rev. Lett. Vol. 97 (2006), p.057402.

Google Scholar

[30] M. F. Yanik S. Fan, M. Soljacic, and J. D. Joannopoulos: Opt. Lett. Vol. 28 (2003), p.2506.

Google Scholar

[31] C. Li, N. Dou, and P. P. Yupapin: J. Opt. A: Pure and Appl. Opt. Vol. 8 (2006), p.728.

Google Scholar

[32] D. Huang and W. She: Opt. Exp. Vol. Vol. 15 (2007), p.8275.

Google Scholar

[33] D. Huang, Y. Wang and J. Luo: Advanced Materials Research Vol. 529 (2012), p.81.

Google Scholar

[34] Keren Fradkin-Kashi and Ady Arie: IEEE J. Quantum Electron. Vol. 35 (1999), p.1649.

Google Scholar

[35] C. Huang, Y. Wang, Y. Zhu: Appl. Opt. Vol. 44 (2005), p.4980.

Google Scholar

[36] G. J. Edwards and M. Lawrence: Opt. and Quant. Electron. Vol. 16 (1984), p.373.

Google Scholar

[37] I. Brener, M. H. Chou, D. Peale and M. M. Fejer: Electron. Lett. Vol. 35 (1999), p.1155.

Google Scholar

[38] K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer: Opt. Lett. Vol. 27 (2002), p.43.

Google Scholar

[39] S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin: Electron. Lett. Vol. 37 (2001), p.26.

DOI: 10.1049/el:20010009

Google Scholar