Recent Progresses on Some Coke Resistant Ni-Based Catalysts for Carbon Dioxide Reforming of Methane

Article Preview

Abstract:

Carbon dioxide reforming of methane (CDR) can convert two greenhouse gases, methane can carbon dioxide, into useful syngas. Nickel-based catalysts have been extensively investigated due to their high activity and low cost. However, coke formation over Ni catalyst is serious and leads to rapid deactivation of the catalyst. Coke resistant Ni catalyst for CDR reaction is desired. In this paper, recent progresses in the design and preparation of coke resistant Ni catalysts supported on solid solutions, zeolite, perovskites and perovskite type oxides, hexaaluminates or substituted hexaaluminates, pyrochlore, montmorillonites, and hydrotalcites for CDR were summarized. The progresses in the use of promoters, in the effect of supporting materials and in the preparation methods have been discussed. The future development of coke resistant Ni catalysts for these processes is briefly addressed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-91

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. P. J. Byrne, R. J. Gohr and R. T. Haslam. Ind. Eng. Chem. . Vol. 24 (1932) p.1129.

Google Scholar

[2] Y. H. Hu. Catalysis Today. Vol. 148 (2009) pp.206-211.

Google Scholar

[3] N. Laosiripojana and S. Assabumrungrat. Appl Catal a-Gen. Vol. 290 (2005) pp.200-211.

Google Scholar

[4] A. Kambolis, H. Matralis, A. Trovarelli and C. Papadopoulou. Applied Catalysis A: General. Vol. 377 (2010) pp.16-26.

DOI: 10.1016/j.apcata.2010.01.013

Google Scholar

[5] J. A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel and A. Monzon. Catal Today. Vol. 63 (2000) pp.71-85.

Google Scholar

[6] Anita Horvátha, Györgyi Steflera, Olga Gesztib, Alain Kiennemanc, Agnieszka Pietraszekc and L. Guczi. catalysis Today. Vol. 109 (2011) pp.102-111.

Google Scholar

[7] Yu-HeWang, Hong-Mei Liua and B. -Q. Xua. Journal of Molecular Catalysis A: Chemical. Vol. 299 (2009) pp.44-52.

Google Scholar

[8] F. Meshkani and M. Rezaei. Catalysis Communications. Vol. 12 (2011) pp.1046-1050.

Google Scholar

[9] Weihua Shen, Hideaki Momoi, Kenta Komatsubara, Taiga Saito, Akihiro Yoshida and S. Naito. Catalysis Today. Vol. 171 (2011) pp.150-155.

Google Scholar

[10] Zhaoyin Hou and T. Yashima. Applied Catalysis A: General. Vol. 261 (2004) pp.205-209.

Google Scholar

[11] A. Luengnaruemitchai and A. Kaengsilalai. Chem Eng J. Vol. 144 (2008) pp.96-102.

Google Scholar

[12] D. Halliche, O. Cherifi and A. Auroux. Thermochim Acta. Vol. 434 (2005) pp.125-131.

Google Scholar

[13] A. N. Pinheiro, A. Valentini, J. M. Sasaki and A. C. Oliveira. Zeolites and Related Materials: Trends, Targets and Challenges, Proceedings of the 4th International Feza Conference. Vol. 174 (2008) pp.205-208.

DOI: 10.1016/s0167-2991(08)80178-4

Google Scholar

[14] P. Frontera, A. Aloise, A. Macario, F. Crea, P. L. Antonucci, G. Giordano and J. B. Nagy. Res Chem Intermediat. Vol. 37 (2011) pp.267-279.

DOI: 10.1007/s11164-011-0249-3

Google Scholar

[15] D. P. Liu, R. Lau, A. Borgna and Y. H. Yang. Appl Catal a-Gen. Vol. 358 (2009) pp.110-118.

Google Scholar

[16] D. P. Liu, X. Y. Quek, W. N. E. Cheo, R. Lau, A. Borgna and Y. H. Yang. J Catal. Vol. 266 (2009) pp.380-390.

Google Scholar

[17] S. B. Zhang, J. K. Wang, H. T. Liu and X. L. Wang. Catal Commun. Vol. 9 (2008) pp.995-1000.

Google Scholar

[18] H. Arbag, S. Yasyerli, N. Yasyerli and G. Dogu. International Journal of Hydrogen Energy. Vol. 35 (2010) pp.2296-2304.

DOI: 10.1016/j.ijhydene.2009.12.109

Google Scholar

[19] S. Yasyerli, S. Filizgok, H. Arbag, N. Yasyerli and G. Dogu. International Journal of Hydrogen Energy. Vol. 36 (2011) pp.4863-4874.

DOI: 10.1016/j.ijhydene.2011.01.120

Google Scholar

[20] M. L. Zhang, S. F. Ji, L. H. Hu, F. X. Yin, C. Y. Li and H. Liu. Chinese J Catal. Vol. 27 (2006) pp.777-782.

Google Scholar

[21] H. Jeong, K. I. Kim, D. Kim and I. K. Song. Journal of Molecular Catalysis A: Chemical. Vol. 246 (2006) pp.43-48.

Google Scholar

[22] G. S. Gallego, C. Batiot-Dupeyrat, J. Barrault, E. Florez and F. Mondragon. Appl Catal a-Gen. Vol. 334 (2008) pp.251-258.

Google Scholar

[23] A. Khalesi, H. R. Arandiyan and M. Parvari. Chinese Journal of Catalysis. Vol. 29 (2008) pp.960-968.

Google Scholar

[24] Gustavo Valderramaa, Alain Kiennemannb and M. R. Goldwasser. Journal of Power Sources. Vol. 195 (2010) pp.1765-1771.

Google Scholar

[25] L. Kapokova, S. Pavlova, R. Bunina, G. Alikina, T. Krieger, A. Ishchenko, V. Rogov and V. Sadykov. Catalysis Today. Vol. 164 (2011) pp.227-233.

DOI: 10.1016/j.cattod.2010.10.086

Google Scholar

[26] Rostrupp-Nielsen JR, Schested J and N. JK. Adv Catal. Vol. 47 (2002) p.65.

Google Scholar

[27] K. Ikkour, D. Sellam, A. Kiennemann, S. Tezkratt and O. Cherifi. Catalysis Letters. Vol. 132 (2009) pp.213-217.

DOI: 10.1007/s10562-009-0094-9

Google Scholar

[28] Nicholas E. McGuirea, Neal P. Sullivana, Olaf Deutschmannb, Huayang Zhua and R. J. Keea. Applied Catalysis A: General. Vol. 394 (2011) pp.257-265.

Google Scholar

[29] S. Gaur, D. J. Haynes and J. J. Spivey. Appl Catal a-Gen. Vol. 403 (2011) pp.142-151.

Google Scholar

[30] M. He, H. Ruisheng, Z. Xiaofei, L. Gaoqing and S. Haiquan. Journal of the chinese rare earth society. vol. (2006) p. s62-s67.

Google Scholar

[31] S. Barama, C. Dupeyrat-Batiot, M. Capron, E. Bordes-Richard and O. Bakhti-Mohammedi. Catal Today. Vol. 141 (2009) pp.385-392.

DOI: 10.1016/j.cattod.2008.06.025

Google Scholar

[32] K. Takehira. Journal of Natural Gas Chemistry. Vol. 18 (2009) pp.237-259.

Google Scholar

[33] C.E. Daza a, C.R. Cabrera b, S. Moreno a and R. Molina. Applied Catalysis A: General. Vol. 378 (2010) pp.125-133.

Google Scholar