[1]
Shannon C E, Communication theory of secrecy system, Bell Syst Tech J, 28: 656 -715(1949).
Google Scholar
[2]
Webster AF, Tavares SE, On the design of S-boxes, Advances in cryptology: Proc of CRYPTO 85. pp: 523-534, New York: Springer-Verlag(1986).
DOI: 10.1007/3-540-39799-x_41
Google Scholar
[3]
Pieprzyk J, Finkelsten G, Towards effective nonlinear cryptosystem design, IEE Proc Part E: Computers Digital Techn, vol 135, pp: 325-335(1988).
DOI: 10.1049/ip-e.1988.0044
Google Scholar
[4]
Adamas C, Tavares S, Good S-boxes are easy to find, In: Advances in cryptology: Proc. of CRYPTO 89. In: Lecture notes in computer science, pp: 612-615(1989).
DOI: 10.1007/0-387-34805-0_56
Google Scholar
[5]
Adams C, Tavares S, The structured design of cryptographically good S-boxes, JCryptol, 3 (1) : 27-41(1990).
Google Scholar
[6]
Detombe J, Tavares S, Constructing large cryptographically strong S-boxes, Advances in cryptology: Proc. of CRYPTO92. In: Lecture notes in computer science(1992).
DOI: 10.1007/3-540-57220-1_60
Google Scholar
[7]
G. Jakimoski, L. Kocarev, Chaos and Cryptography: Block encryption ciphers based on chaotic maps, IEEE Trans. Circuits Syst. I; Vol. 48, No. 2, pp: 163-169 (2001).
DOI: 10.1109/81.904880
Google Scholar
[8]
G. Jakimoski, L. Kocarev, Differential and Linear Probabilities of a Block-Encryption Cipher, IEEE Trans Circuits Syst-I; 50(1): 121-123(2003).
DOI: 10.1109/tcsi.2002.804549
Google Scholar
[9]
Yi X, Cheng S, You X, A method for obtaining cryptographically strong S-boxes, Global telecommunications conference, GLOBECOM 97, Vol. 2. pp: 689-693. New York: IEEE(1997).
DOI: 10.1109/glocom.1997.638418
Google Scholar
[10]
G. Álvarez, F. Montoya, M. Romera, G. Pastor, Cryptanalysis of a discrete chaotic system using external key, Phys. Lett. A 319: 334-339(2003).
DOI: 10.1016/j.physleta.2003.10.044
Google Scholar
[11]
G. Álvarez, F. Montoya, M. Romera, G. Pastor, Cryptanalysis of dynamic look-up table based chaotic cryptosystems, Phys. Lett. A 326: 211-218 (2004).
DOI: 10.1016/j.physleta.2004.04.018
Google Scholar
[12]
G. Chen, Y. Chen, X. Liao, An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps, Chaos, Solitons and Fractals, 31: 571-579 (2007).
DOI: 10.1016/j.chaos.2005.10.022
Google Scholar
[13]
Biham E, Shamir A, Differential cryptanalysis of DES-like cryptosystems, J Cryptol 1991; 4(1): 3-72 (1991).
DOI: 10.1007/bf00630563
Google Scholar
[14]
Tang GP, Liao XF, Chen Y, A novel method for designing S-boxes based on chaotic maps, Chaos, Solitons & Fractals; vol 23, pp: 413-419(2005).
DOI: 10.1016/j.chaos.2004.04.023
Google Scholar
[15]
Y. Wang, K.W. Wong, X. Liao, T. Xiang, A block cipher with dynamic S-boxes based on tent map, Communications in Nonlinear Science and Numerical Simulation. Vol 14, Issue 7, pp.3089-3099 (2009).
DOI: 10.1016/j.cnsns.2008.12.005
Google Scholar
[16]
Fatih Özkaynak a, Ahmet Bedri Özerb, A method for designing strong S-Boxes based on chaotic Lorenz system, Physics Letters A 374: 3733-3738(2010).
DOI: 10.1016/j.physleta.2010.07.019
Google Scholar
[17]
A. Baranovsky, D. Daems, Design of one-dimensional chaotic maps with prescribed statistical properties, International Journal of Bifurcation and Chaos, 5(6): 1585-1598 (1995).
DOI: 10.1142/s0218127495001198
Google Scholar
[18]
Tao Xiang, Xiaofeng Liao, Kwok-wo Wong, An improved particle swarm optimization algorithm combined with piecewise linear chaotic map, Appl Math Comput. Vol 190, pp: 1637-1645(2007).
DOI: 10.1016/j.amc.2007.02.103
Google Scholar
[19]
Fridrich J, Symmetric ciphers based on two-dimensional chaotic maps, Int J Bifurcat Chaos, vol 8(6), pp: 1259-1284(1998).
DOI: 10.1142/s021812749800098x
Google Scholar
[20]
Joan Daemen, Vincent Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard, Springer-Verlag(2002).
Google Scholar
[21]
Dawson M, Tavares SE, An expanded set of S-box design criteria based on information theory and its relation to differential-like attacks, In: Advances in cryptology: Proc of Eurocrypt 91. pp: 352-367, New York: Springer-Verlag (1991).
DOI: 10.1007/3-540-46416-6_30
Google Scholar