A Method for Obtaining Chaos-Based S-Box via a PWLCM

Article Preview

Abstract:

This paper presented a method for obtaining cryptographically strong substitution box (S-box) based on piecewise linear chaotic map (PWLCM). The cryptographical properties were analyzed , such as bijection, nonlinearity, strict avalanche, output bits independence and equiprobable input/output XOR distribution. The results of numerical analysis show that all the criteria for designing good S-box can be satisfied approximately and the proposed cryptosystem is a highly reliable system suitable for secure network communication.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

885-890

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Shannon C E, Communication theory of secrecy system, Bell Syst Tech J, 28: 656 -715(1949).

Google Scholar

[2] Webster AF, Tavares SE, On the design of S-boxes, Advances in cryptology: Proc of CRYPTO 85. pp: 523-534, New York: Springer-Verlag(1986).

DOI: 10.1007/3-540-39799-x_41

Google Scholar

[3] Pieprzyk J, Finkelsten G, Towards effective nonlinear cryptosystem design, IEE Proc Part E: Computers Digital Techn, vol 135, pp: 325-335(1988).

DOI: 10.1049/ip-e.1988.0044

Google Scholar

[4] Adamas C, Tavares S, Good S-boxes are easy to find, In: Advances in cryptology: Proc. of CRYPTO 89. In: Lecture notes in computer science, pp: 612-615(1989).

DOI: 10.1007/0-387-34805-0_56

Google Scholar

[5] Adams C, Tavares S, The structured design of cryptographically good S-boxes, JCryptol, 3 (1) : 27-41(1990).

Google Scholar

[6] Detombe J, Tavares S, Constructing large cryptographically strong S-boxes, Advances in cryptology: Proc. of CRYPTO92. In: Lecture notes in computer science(1992).

DOI: 10.1007/3-540-57220-1_60

Google Scholar

[7] G. Jakimoski, L. Kocarev, Chaos and Cryptography: Block encryption ciphers based on chaotic maps, IEEE Trans. Circuits Syst. I; Vol. 48, No. 2, pp: 163-169 (2001).

DOI: 10.1109/81.904880

Google Scholar

[8] G. Jakimoski, L. Kocarev, Differential and Linear Probabilities of a Block-Encryption Cipher, IEEE Trans Circuits Syst-I; 50(1): 121-123(2003).

DOI: 10.1109/tcsi.2002.804549

Google Scholar

[9] Yi X, Cheng S, You X, A method for obtaining cryptographically strong S-boxes, Global telecommunications conference, GLOBECOM 97, Vol. 2. pp: 689-693. New York: IEEE(1997).

DOI: 10.1109/glocom.1997.638418

Google Scholar

[10] G. Álvarez, F. Montoya, M. Romera, G. Pastor, Cryptanalysis of a discrete chaotic system using external key, Phys. Lett. A 319: 334-339(2003).

DOI: 10.1016/j.physleta.2003.10.044

Google Scholar

[11] G. Álvarez, F. Montoya, M. Romera, G. Pastor, Cryptanalysis of dynamic look-up table based chaotic cryptosystems, Phys. Lett. A 326: 211-218 (2004).

DOI: 10.1016/j.physleta.2004.04.018

Google Scholar

[12] G. Chen, Y. Chen, X. Liao, An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps, Chaos, Solitons and Fractals, 31: 571-579 (2007).

DOI: 10.1016/j.chaos.2005.10.022

Google Scholar

[13] Biham E, Shamir A, Differential cryptanalysis of DES-like cryptosystems, J Cryptol 1991; 4(1): 3-72 (1991).

DOI: 10.1007/bf00630563

Google Scholar

[14] Tang GP, Liao XF, Chen Y, A novel method for designing S-boxes based on chaotic maps, Chaos, Solitons & Fractals; vol 23, pp: 413-419(2005).

DOI: 10.1016/j.chaos.2004.04.023

Google Scholar

[15] Y. Wang, K.W. Wong, X. Liao, T. Xiang, A block cipher with dynamic S-boxes based on tent map, Communications in Nonlinear Science and Numerical Simulation. Vol 14, Issue 7, pp.3089-3099 (2009).

DOI: 10.1016/j.cnsns.2008.12.005

Google Scholar

[16] Fatih Özkaynak a, Ahmet Bedri Özerb, A method for designing strong S-Boxes based on chaotic Lorenz system, Physics Letters A 374: 3733-3738(2010).

DOI: 10.1016/j.physleta.2010.07.019

Google Scholar

[17] A. Baranovsky, D. Daems, Design of one-dimensional chaotic maps with prescribed statistical properties, International Journal of Bifurcation and Chaos, 5(6): 1585-1598 (1995).

DOI: 10.1142/s0218127495001198

Google Scholar

[18] Tao Xiang, Xiaofeng Liao, Kwok-wo Wong, An improved particle swarm optimization algorithm combined with piecewise linear chaotic map, Appl Math Comput. Vol 190, pp: 1637-1645(2007).

DOI: 10.1016/j.amc.2007.02.103

Google Scholar

[19] Fridrich J, Symmetric ciphers based on two-dimensional chaotic maps, Int J Bifurcat Chaos, vol 8(6), pp: 1259-1284(1998).

DOI: 10.1142/s021812749800098x

Google Scholar

[20] Joan Daemen, Vincent Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard, Springer-Verlag(2002).

Google Scholar

[21] Dawson M, Tavares SE, An expanded set of S-box design criteria based on information theory and its relation to differential-like attacks, In: Advances in cryptology: Proc of Eurocrypt 91. pp: 352-367, New York: Springer-Verlag (1991).

DOI: 10.1007/3-540-46416-6_30

Google Scholar