In Situ Study of Stress-Induced Martensitic Transformation in Ni47Ti44Nb9 Shape-Memory Alloys

Article Preview

Abstract:

The stress-induced martensitic transformation in Ni47Ti44Nb9 was examined using X-ray diffraction (XRD) during in situ uniaxial loading and unloading. A new martensitic (020) peak in XRD patterns is observed under strain from 10% to 12%. It indicates that the martensitic texture has reached the optimum orientation. After unloading, approximately 8% irreversible strain still remains. It is associated with the reorientation of martensites and the plastic deformation of the B2-phase. In addition, the deformed β-Nb particles would also reduce the driving force for the reverse transformation. The details of lattice-strain and shared applied stress (SAS) in the B2-phase and β-Nb phase are also discussed in this work.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

1096-1101

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Xiao, X. Q. Zhao, H. B. Xu: Acta Metall. Sin. Vol. 45 (2009), p.626 (In Chinese).

Google Scholar

[2] Y. F. Zheng, L. C. Zhao, H. Q. Ye: Mater. Sci. Eng. A Vol. 273-275 (1999), p.271.

Google Scholar

[3] L. Wang, L. J. Rong, D.S. Yan, Z. M. Jiang, Y. Y. Li: Intermetallics Vol. 13 (2005), p.403.

Google Scholar

[4] W. Cai, C. S. Zhang, L. C. Zhao: J. Mater. Sci. Lett. Vol. 13 (1994), p.8.

Google Scholar

[5] Z. Z. Bao, S. Guo, F. Xiao, X. Q. Zhao: Prog. Nat Sci. Vol. 21 (2011), p.293.

Google Scholar

[6] M. Piao, S. Miyazaki and K. Otsuka: Mater. Trans., JIM Vol. 33 (1992), p.346.

Google Scholar

[7] M. Hasan, W. W. Schmahl, K. Hackl, R. Heinen, J. Frenzel, S. Gollerthan, G. Eggeler, M. Wagner, J. Khalil-Allafi, A. Baruj: Mater. Sci. Eng. A Vol. 481-482 (2008), p.414.

DOI: 10.1016/j.msea.2007.02.156

Google Scholar

[8] J. Khalil-Allafi, B. Hasse, M. Kloenne, M. Wagner, T. Pirling, W. Predki, W. W. Schmahl: Materialwiss Werkstofftech Vol. 35 (2004), p.280.

DOI: 10.1002/mawe.200400744

Google Scholar

[9] W. W. Schmahl, J. Khalil-Allafi, B. Hasse, M. Wagner, A. Heckmann, C. Somsen: Mater. Sci. Eng. A Vol. 378 (2004), p.81.

Google Scholar

[10] K. L. Ng, Q. P. Sun: Mech. Mater. Vol. 38 (2006), p.41.

Google Scholar

[11] N. G. Jones, D. Dye: Intermetallics Vol. 19 (2011), p.1348.

Google Scholar

[12] Y. F. Zheng, W. Cai, J. X. Zhang, L. C. Zhao, H. Q. Ye: Acta Mater. Vol. 48 (2000), p.1409.

Google Scholar

[13] T. Ezaz, H. Sehitoglu, H. J. Maier: Acta Mater. Vol. 59 (2011), p.5893.

Google Scholar

[14] X. M. He, L. J. Rong, D. S. Yan, Z. M. Jiang, Y. Y. Li: Acta Metall. Sin. Vol. 40 (2004), p.721.

Google Scholar

[15] C. S. Zhang, W. Cai, L. C. Zhao: Acta Metall. Sin. Vol. 4A (1991), p.436.

Google Scholar

[16] Y. Chen, H. C. Jiang, L. J. Rong, L. Xiao, X.Q. Zhao: Intermetallics Vol. 19 (2011), p.217.

Google Scholar

[17] W. J. Moberly, J. L. Proft, T. W. Duerig, R. Sinclair: Acta Metall. Mater. Vol. 38 (1990), p.2601.

Google Scholar