Numerical Simulations of Uniaxial Compression Properties of SiC/6061 Aluminum Alloy Co–Continuous Composites

Article Preview

Abstract:

The uniaxial deformation properties of a SiC/6061 Al alloy co–continuous composites (CCCs) where both phases are continuous have been studied using the Solidwork Simulation software applied the finite element method (FEM). The simulated results have shown that the composites are relatively anisotropy, 6061 Al alloy matrix and SiC network ceramic exhibit different mechanical behaviour. The ultimate stress is found near the interface of composites. The configuration of SiC has relatively great influence on intensity and distribution of stress in the composite. The material behaves in a nearly bilinear manner defined by the Young’s modulus and an elastic-plastic modulus. The large deformation appears inside 6061 Al alloy matrix. The 6061 Al alloy matrix and SiC can restrict each other to prevent from producing the strain under the load.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

139-142

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. H. Wang, H. R. Geng, Y. Z. Wang and B. Sun, Materials of Mechanical Engineering , Vol. 29(12), (2005), p.1–3.

Google Scholar

[2] S. S Qin, Material Journal, Vol. 7(10) (2003) , p.68–70.

Google Scholar

[3] R. Jhaver and H. Tippur, Materials Science and Engineering A, Vol. 499 (2009), p.507–517.

Google Scholar

[4] H. W Xing, X. M Cao and W. P. Hu. Materials Letters, Vol. 59(2005), p.1563–1566.

Google Scholar

[5] M. J Zhao, N. Li, L. Z Zhao and X. L. Zhang, , IFIP AICT , Vol. 347(2011), p.480–485.

Google Scholar

[6] M. Pavese, M. Valle, C and Badini, Journal of the European Ceramic Society, Vol. 27 (2007), p.131–141.

Google Scholar

[7] G. Oder, M. Reibenschuh, T. Lerher, M. Sraml, B. Samec and I. Potrc, Advanced Engineering, Vol. 3(1) (2009), p.95–102.

Google Scholar

[8] H. Zhang, Y. Zeng, H. Zhang and F. Guo, J. Compos. Mater, Vol. 4 4(10) (2010), p.1247–1260.

Google Scholar

[9] L. Yu, Y. L. Jiang, S. K. Lu, K. Luo, H. Q. Ru, Proceedings of the 1st World Congress on Integrated Computational Materials Engineering, ICME, (2011), p.183–188.

DOI: 10.1002/9781118147726.ch25

Google Scholar

[10] H. Q. Ru, M. Fang, R. Q. Wang, L. Zuo, China Patent, CN200510046691. X (2006).

Google Scholar

[11] L. Yu, Y. L. Jiang, S. K. Lu, H. Q. Ru and M. Fang, Applied Mechanics and Materials, 120 (2012), p.51–55.

Google Scholar

[12] L. Yu, Y. L. Jiang, H. Q. Ru, J. T. Liu and K. Luo, Advanced Materials Research, Vol. 39–242, (2011), p.1661–1664.

Google Scholar

[13] Y. H. Ha, A. V. Richard, F. William, L. P. Costantino, Jennifer Shin, Andrew B. Smith, T. Paul, Matsudaira, and Edwin L. Thomas , Adv. Mater, Vol. 16(13) (2004), p.1091–1094.

Google Scholar

[14] S. Wang, H. Geng, Y. Wang and H. Hui, Acta Material Composite, Vol. 23 (2006), p.7–11.

Google Scholar

[15] L. F Wang, L. Jacky, E. L. Thomas and M. C. Boyce, Adv. Mater., Vol. 23(13)(2011), p.1524–1529.

Google Scholar

[16] G. S. Daehn, B. Starck, L. Xu, K. F. Elfishawy, J. Ringnalda and H. L. Fraser , Acta mater. Vol. 44(I), (1996), p.2499261.

DOI: 10.1016/1359-6454(95)00138-8

Google Scholar