Direct Electrodeposition of Highly Ordered Au-Cu Alloy Nanowire Arrays

Article Preview

Abstract:

Au-Cu alloy nanowires with diameters 50-100nm and lengths of 500nm have been obtained by direct electrochemical deposition.The fabrication of highly ordered Au-Cu alloy nanowires arrays was used as a Anodic aluminum oxide (AAO) template. This template was fabricated with two-step anodizing method. In this paper, we report electrochemical deposition fabrication of Au–Cu alloy nanowire arrays by AAO. Use SEM, TEM can detect morphology of Au-Cu alloy nanowires, And use EDS to analyse the elements.The electrocatalytic activities of the Au-Cu alloy nanowires for the oxidation of ethanol in acidic medium were investigated by cyclic voltammetry.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

155-158

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys.Rev. Lett. 61 (1988) 2472.

DOI: 10.1103/physrevlett.61.2472

Google Scholar

[2] G. Binasch, P. Gru¨nberg, F. Saurenbach, W. Zinn, Phys. Rev. B39 (1989) 4828.

Google Scholar

[3] J.C. Johnson, H.Q. Yan, P.D. Yang, R.J. Saykally, J. Phys. Chem. B 107(2003) 8816.

Google Scholar

[4] J.C. Johnson, H.Q. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, P.D. Yang, J. Phys. Chem. B 105 (2001) 11387.

Google Scholar

[5] Wen-Bo Zhao, Jun-Jie Zhu, Journal of Crystal Growth 258 (2003) 176

Google Scholar

[6] Sima Valizadeh, Lars Hultman, Adv. Funct. Mater.,12(2002)766

Google Scholar

[7] Xinyi Zhang, Huanting Wang. J. Mater. Chem. 18(2008)465

Google Scholar

[8] T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Science .261 (1993) 1316.

Google Scholar

[9] K. Liu, K. Nagodawithana, P.C. Searson, C.L. Chien, Phys. Rev.B. 51 (1995) 7381.

Google Scholar

[10] L. Sun, P.C. Searson, C.L. Chien, Phys. Rev. B. 61 (2000) R6463.

Google Scholar

[11] M. Yang et al. / Biosensors and Bioelectronics. 23 (2007) 414

Google Scholar

[12] A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, N. Teramae, Nat. Mater. 3(2004)337.

DOI: 10.1038/nmat1107

Google Scholar

[13] Y. Y. Wu, T. Livneh, Y. X. Zhang, G. S. Cheng, J. F. Wang, J. Tang, M. Moskovits, G. D. Stucky, Nano Lett. 4(2004)2337.

Google Scholar

[14] Y. G. Sun, Z. L. Tao, J. Chen, T. Herricks, Y. N. Xia, J. Am. Chem. Soc. 126(2004)5940.

Google Scholar

[15] Y. L. Wang, X. C. Jiang, Y. N. Xia, J. Am. Chem. Soc. 125(2003)16176.

Google Scholar

[16] A. Saedi, M. Ghorbani. Materials Chemistry and Physics. 91 (2005) 417

Google Scholar

[17] Jiewu Cui, Yucheng Wu. Applied Surface Science. 258(2012). 5305-5311

Google Scholar

[18] C. X. Ji, P. C. Searson, J. Phys. Chem. B . 107(2003)4494.

Google Scholar

[19] R. Laocharoensuk, S. Sattayasamitsathis, J. Burdick, P. Kanatharana, P. Thavarungkul, J. Wang, ACS Nano . 1(2007)403

DOI: 10.1021/nn700255x

Google Scholar

[20] Xinyi Zhang, Dan Li. ChemPhysChem. 10(2009) 436

Google Scholar

[21] Xinyi Zhang, Dan Li. Materials Letters. 64(2010)1169

Google Scholar