Evaluation of Residual Iron in Carbon Nanotubes Purified by Air and Acid Treatments

Article Preview

Abstract:

A detailed analysis by thermogravimetric analysis was carried out on multiwalled carbon nanotubes after air and acid treatment. When MWCNTs are treated in air at 300 oC for 2 h and then refluxed with 6 mol/L HCl solution, the weight percent of residual iron is near zero. The result can also be verified by the contrast of SEM photographs of untreated and treated MWCNTs.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

175-177

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354(1991) 56–58.

DOI: 10.1038/354056a0

Google Scholar

[2] V. M. Torres, M. Posa, B. Srdjenovic, A. L. Simplício, Solubilization of fullerene C 60 in micellar solutions of different solubilizers, Colloid. Surface. B. 82 (2011) 46–53.

DOI: 10.1016/j.colsurfb.2010.08.012

Google Scholar

[3] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56 (2011) 1178–1271.

DOI: 10.1016/j.pmatsci.2011.03.003

Google Scholar

[4] A. T. Balaban, D. J. Klein, Local interconversions between graphite and diamond structures, Carbon 35(1997) 247–251.

DOI: 10.1016/s0008-6223(96)00147-9

Google Scholar

[5] J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Carbon 40 (2002) 1193–1197.

Google Scholar

[6] H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nature 384 (1996) 147–150.

DOI: 10.1038/384147a0

Google Scholar

[7] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287 (2000) 622–625.

DOI: 10.1126/science.287.5453.622

Google Scholar

[8] T.W. Ebbesen, P.M. Ajayan, Nature 358 (1992) 220–221.

Google Scholar

[9] T. Guo, P. NIkolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 243 (1995) 49–54.

Google Scholar

[10] W.P. Jiang, P. Molian, H. Ferkel, J. Manuf. Sci. Eng. 127 (2005) 703–707.

Google Scholar

[11] A. Suri, K.S. Coleman, Carbon 49 (2011) 3031–3038.

Google Scholar

[12] K.A. Wepasnick, B.S. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, D.H. Fairbrother, Carbon 49 (2011) 24–36.

DOI: 10.1016/j.carbon.2010.08.034

Google Scholar

[13] E.R. Edwards, E.F. Antunes, E.C. Botleho, M.R. Baldan, E.J. Corat, Appl. Surf. Sci. 258 (2011) 641–648.

Google Scholar

[14] E.R. Edwards, E.F. Antunes, E.C. Botleho, M.R. Baldan, E.J. Corat, Appl. Surf. Sci. 258 (2011) 641–648.

Google Scholar