Formation Mechanism of Polyaniline Nanostructures in PEG Solution

Article Preview

Abstract:

Nano structured polyaniline was intensively studied for its low price, fascinating tunable conductive properties by dope-dedope process. While the nanostructural formation mechanism still not clear. In this work, PANI nanostructures were obtained in acidity PEG solution, and the polymerization process was monitored by a pH instrument. Moreover, the morphology evolution was monitored, based on which a self-assemble mechanism was issued. The oxidation products of anilinium cations were consider as the seed template for the formation of nanostructures, and appropriate acidity is propitious to the formation of PANI nanostructures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

182-187

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Anilkulmar, P.; Jayakannan and M: J. Phys. Chem. B Vol. 113(2009), p.11614.

Google Scholar

[2] Bhadra, J., Sarkar, D: Mater. Lett. Vol. 63 (2009), p.69.

Google Scholar

[3] Cao, Y., Mallouk, T. E: Chem. Mater. Vol. 20 (2008), p.5260.

Google Scholar

[4] Chiou, N. -R., Lee, L. J., Epstein, A: Chem. Mater. Vol. 19(2007), p.3589.

Google Scholar

[5] Huang, J., Kaner, R. B. J. Am. Chem. Soc. Vol. 126(2004), p.851.

Google Scholar

[6] Huang, J., Virji, S., Weiller, B. H., and Kaner, R. B: J. Am. Chem. Soc. Vol. 125(2003), p.314.

Google Scholar

[7] Janata, J., Josowicz, M.: Nat. Mater. Vol. 2(2003), p.19.

Google Scholar

[8] Jang, J., Bae, J., Choi, M. and Yoon, S.: Carbon Vol. 43(2005), p.2730.

Google Scholar

[9] Li, L., Liu, E., Li, J., Yang, Y., Shen, H., Huang, Z., Xiang, X., and Li, W.: Power Source, Vol. 195 (2010), p.1516.

Google Scholar

[10] Oyama, N.: Macromol Symp Vol. 159(2000), p.221.

Google Scholar

[11] Wang, C., Mottaghitalab, V., Too, C., Spinks, G., and Wallace, G.: Power Source. Vol. 163 (2007), p.1105.

Google Scholar

[12] Du, X. -S., Zhou, C. -F., Wang, G. -T., and Mai, Y. -W. Chem. Mater. Vol. 20(2008), p.3806.

Google Scholar

[13] Xing, S., Zhao, G. Mater. Lett. Vol. 61, (2007), p. (2040).

Google Scholar

[14] Zhou, C., Han, J., and Guo, R.: Macromolecule. Vol. 42 (2009), p.1252.

Google Scholar

[15] Stejskal, J., Omastova, M., Fedorova, S., Prokes, J., and Trchova, M.: Polymer Vol. 44(2003), p.1353.

Google Scholar

[16] Zhang, L. J., Long, Y. Z., Chen, Z. J., and Wan, M. X.: Adv. Funct. Mater. Vol. 14 (2004), p.693.

Google Scholar

[17] Zhao, W., Ma, L., and Lu, K.: J. Polymer Res. Vol. 14(2006), p.1.

Google Scholar

[18] Ćirić-Marjanović, G., Trchová, M., Stejskal, J: J Raman Spectro. Vol. 39(2008), p.1375.

DOI: 10.1002/jrs.2007

Google Scholar

[19] Stejskal, J., Sapurina, I., Trchova, M., Konyushenko, E., and Holler, P: Polymer Vol. 47(2006), p.8253.

Google Scholar

[20] Stejskal, J., Ciric-Marjanovic, G., and Trchova, M: Collect Czech Chem C Vol. 71(2006), p.1407.

Google Scholar

[21] Zujovic, Z. D., Laslau, C., Bowmaker, G. A., Kilmartin, P. A., Webber, A. L., Brown, S. P., and Travas-Sejdic, J: Macromolecules, Vol. 43 (2010), p.662.

DOI: 10.1021/ma902109r

Google Scholar

[22] Cheng, F., Tang, W., Li, C., Chen, J., Liu, H., Shen, P. and Dou, S: Chem. A Euro. Journal Vol. 12 (2006), p.3082.

Google Scholar

[23] Huang, J: Carbon Vol. 41(2003), p.2731.

Google Scholar