Scallion-Root-Shaped GaN Nanorods Grown by Two-Step Method and Study on their Properties

Article Preview

Abstract:

Two-step growth technology to successfully synthesize scallion-root-shaped GaN nanorods was presented in this paper. This growth method is applicable to continuous synthesis a large number of single-crystalline GaN nanorods with a high purity at a low cost. X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) are employed to characterize the structure, composition and morphology of as-grown GaN nanorods. The results show that the obtained nanorods are single-crystal GaN with hexagonal wurtzite structure and have a relatively high purity. The diameter of the nanorods is about 500nm with length up to several tens of micrometers. The representative photoluminescence spectra (PL) measured at room temperature exhibited a strong and broad emission peak at 388nm corresponding to the strong-band-emission in wurtzite GaN, indicating that the nanorods have a good emission property. The growth mechanism is also briefly discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

197-201

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. N. R. Rao and A. K. Cheetham: J. Mater. Chem. Vol.11(2001), p.2887

Google Scholar

[2] Y. Y. Wu and P. D. Yang : J. Amer. Chem. Soc. Vol. 123 (2001), p.3165

Google Scholar

[3] S. B. Xue, H. Z. Zhuang, B. L. Li, L. J. Hu and S. Y. Zhang, C. S. Xue: Materials Letters Vol. 61 (2007), p.3867

Google Scholar

[4] Y. Huang, X. Duan, Y. Cui and C. M. Lieber: Nano Lett. Vol. 2 (2002), p.101

Google Scholar

[5] D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki and Y. Fukuda: J. Appl. Phys. Vol. 90 (2001), p.4219

Google Scholar

[6] N. Elkashef, R. S. Srinivasa, S. Major, S. C. Sabharwal and K. P. Muthe: Thin solid films Vol. 333(1998), p.9

DOI: 10.1016/s0040-6090(98)00550-1

Google Scholar

[7] C. R. Kingsley, T. J. Whitaker, A. T. S. Wee, R. B. Jackman and J. S. Foord: Mater. Sci. Eng. B Vol. 29 (1995) p.78

Google Scholar

[8] T. Sasaki and T. Matsuoka: J. Appl. Phys. Vol. 64 (1998), p.4531

Google Scholar

[9] S. Pal and T. Sugino: Appl. Surf. Sci. Vol. 161 (2000), p.263

Google Scholar

[10] F. M. Amanullah, K. J. Pratap and V. H. Babu: Mater. Sci. Eng. B Vol. 52(1998), p.93

Google Scholar

[11] P. Fini, X. Wu, E. J. Tarsa, Y. Golan, Srikant V., Keller S., S. P. Denbaars and J. S. Speck: Jan J Appl. Phys. Vol. 37 (1998), p.4460

DOI: 10.1143/jjap.37.4460

Google Scholar

[12] L. X. Qin, C. S. Xue, H. Z. Zhuang, Z. Z. Yang, J. H. Chen, H. Li and D. D. Zhang : Materials science and Technology Vol. 24 ( 2008), p.585

Google Scholar

[13] H. L. Ma, and C. S. Xue: Nanosemiconductors ( National Defense Industry Prss, Beijing 2009)

Google Scholar

[14] W. S. Jung: Bull Korean Chem. Soc. Vol. 25 ( 2004), p.51

Google Scholar