Removal Chromium and Turbidity Using Starch Derivative Flocculant CSAX

Article Preview

Abstract:

An investigation was undertaken regarding the removal chromium ions and turbidity from aqueous solutions by crosslinked starch-graft-polyacrylamide-co-Sodium xanthate (CSAX) containing acylamino、carboxyl and xanthogen groups, which were prepared by grafting copolymerization of crosslinked corn starch, acrylamide (AM), and sodium xanthate in aqueous solution. The performances of CSAX in wastewater treatment were evaluated by flocculation experiment. The effects of the pH of the wastewater were considered. The results show that the CSAX was successfully synthesized with the functions of removing both turbidity and chromium ions from aqueous solution. The highest removal Cr(Ⅵ) took place at pH 2, while the highest removal Cr(Ⅲ) at pH 5. The subsection flocculation process was beneficial to remove both Cr(Ⅵ) and Cr(Ⅲ) synchronously. Cr(Ⅲ) and turbidity have a cooperative removal effect with each other in the process of treating wastewater containing both chromium ions and turbidity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

1597-1601

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Deng, R. Bai: Water Res. Vol. 38 (2004), p.2426.

Google Scholar

[2] S. Parinda, T. Paitip, N. Woranan, C. Supanee: J. Hazard. Mater. Vol. 141 (2007), p.637.

Google Scholar

[3] M. Kobya: Adsorpt Sci. Technol. Vol. 22 (2004), p.51.

Google Scholar

[4] S. Babel, D. Del, M. Dacera: Waste Manage. Vol. 26 (2006), p.988.

Google Scholar

[5] A. Zhitkovich: Chem. Res. Toxicol. Vol. 18 (2005), p.3.

Google Scholar

[6] A. Demir, M. Arisoy: J. Hazard. Mater. Vol. 147 (2007), p.275.

Google Scholar

[7] S. K. Sharma, D. P. Singh, H. D. Shukla, A. Ahmad, P. S. Bisen: World J. Microbiol. Biotechnol. Vol. 17 (2001), p.707.

Google Scholar

[8] Y. M. Sui, D. Y. Wu, D.L. Zhang, X. Y. Zheng, Z.B. Hu, H. N. Kong: J. Colloid Interface Sci. Vol. 322 (2008), p.13.

Google Scholar

[9] K. Sevgi, A. Goksel: Monatshefte fur Chemie. Vol. 139 (2008), p.873.

Google Scholar

[10] B. Ayse, B. Evran, H. Senay, O. Secill: Bioresour. Technol. Vol. 98 (2006), p.661.

Google Scholar

[11] R.E. Wing, C.L. Swanson, W.M. Doane, C.R. Russell: J. Water Pollution Control Federation Vol. 46 (1974), p. (2043).

Google Scholar

[12] R.E. Wing, W.M. Doane, C. R Russel: J. Appl. Polym. Sci. Vol. 19 (1975), p.847.

Google Scholar

[13] S. Keles, G. Guelu: Polym. Plast. Technol. Eng. Vol. 45 (2006), p.365.

Google Scholar

[14] Y. X. Chen, G. Y. Wang: Colloids Surf. A: Physicochem. Eng. Aspects Vol. 289 (2006), p.75.

Google Scholar

[15] L. M. Zhang, D.Q. Chen: Colloids Surf. A: Physicochem. Eng. Aspects Vol. 205 (2002), p.231.

Google Scholar

[16] X. K. Hao, Q. Chang, L. L. Duan, Y.Z. Zhang: Starch/Stärke, Vol. 59 (2007), p.255.

Google Scholar

[17] L. Besra, D.K. Sengupta, S.K. Roy: Sep. Purif. Technol. Vol. 37 (2006), p.231.

Google Scholar

[18] S. Nalini, D. Awantika, I. Leela, S. Rashmi: Bioresour. Technol. Vol. 97 (2006), p.2377.

Google Scholar