Synthesis and Surface Properties of SiO2 Modified Fluorosilicone Acrylic Copolymer Hybrids

Article Preview

Abstract:

SiO2 modified fluorosilicone acrylic copolymer hybrids were synthesized via seeding emulsion polymerization in the presence of conventional nonionic and anionic surfactants, in which methyl methacrylate (MMA) and butyl acrylate (BA) were used as main monomers, small amount of methacrylic acid (MAA) and 2-hydroxyethyl methacrylate (HEMA) were used as functional monomers to confer adhesion, hardness and strength upon the latex film, while trifluoroethyl methacrylate (TFMA) and vinyl triethoxy silane (VTES) were used as fluorine- and silicon- containing monomers respectively. Meanwhile, tetraethoxysilane (TEOS) used as the precursor to prepare in-situ SiO2 nanoparticles, was added during the polymerization process, which resulted in SiO2 enhanced fluorosilicone acrylic copolymer latexes. SiO2 nanoparticles were produced in-situ during the polymerization. The nanocomposite latex film revealed better thermal resistance and wear resistance properties as compared with the counterpart free of SiO2 nanoparticles prepared under similar polymerization conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

1851-1855

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.H. Wu, T.C. Chang, Y.T. Wang, Y.S. Chiu: J. Polym. Sci. Part A: Polym. Chem., Vol. 37 (1999), pp.2275-2284.

Google Scholar

[2] Y. Zhang, H. Chen, X. Shu, Q. Zou, M. Chen: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 350 (2009), pp.26-32.

Google Scholar

[3] X. Cui, S. Zhong, J. Yan, C. Wang, H. Zhang, H. Wang: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 360 (2010), pp.41-46.

Google Scholar

[4] F. Zhang, Y.P. Wang, C.P. Chai: Polym Int, Vol. 53 (2004), pp.1353-1359.

Google Scholar

[5] X.F. Ding, J.Z. Zhao, Y.H. Liu, H.B. Zhang, Z.C. Wang: Mater Lett, Vol. 58 (2004), pp.3126-3130.

Google Scholar

[6] I. Sondi, T.H. Fedynyshyn, R. Sinta, E. Matijevic: Langmuir, Vol. 16 (2000), pp.9031-9034.

Google Scholar

[7] P.T. Xiong, D.P. Lu, P.Z. Chen, H.Z. Huang, R. Guan: European Polymer Journal, Vol. 43 (2007), pp.2117-2126.

Google Scholar

[8] R.A. Iezzi, S. Gaboury, K. Wood: Prog Org Coat, Vol. 40 (2000), pp.55-60.

Google Scholar

[9] T. Poggio, V. Kapeliouchko, V. Arcella, E. Marchese: Prog Org Coat, Vol. 48 (2003), pp.310-315.

Google Scholar

[10] V.C. Malshe, N.S. Sangaj: Prog Org Coat, Vol. 53 (2005), pp.207-211.

Google Scholar

[11] H. Mori, C. Sada, T. Konno, K. Yonetake: Polymer, Vol. 52 (2011), pp.5452-5463.

Google Scholar

[12] X.Y. Xiao, R. Xu: J Appl Polym Sci, Vol. 119 (2011), pp.1576-1585.

Google Scholar

[13] J. Liang, L. He, X. Dong, T. Zhou: J Colloid Interface Sci, Vol. 369 (2012), pp.435-441.

Google Scholar

[14] T.C. Chang, Y.T. Wang, Y.S. Hong, Y.S. Chiu: J. Polym. Sci. , Vol. 38 (2000), p.1772.

Google Scholar

[15] M.Z. Rong, M.Q. Zhang, Y.X. Zheng, H.M. Zeng, K. Friedrich: Polymer, Vol. 42 (2001), pp.3301-3304.

Google Scholar

[16] S.X. Zhou, L.M. Wu, J. Sun, W.D. Shen: Prog Org Coat, Vol. 45 (2002), pp.33-42.

Google Scholar

[17] M.J. Percy, C. Barthet, J.C. Lobb, M.A. Khan, S.F. Lascelles, M. Vamvakaki, S.P. Armes: Langmuir, Vol. 16 (2000), pp.6913-6920.

DOI: 10.1021/la0004294

Google Scholar

[18] H. Kaddami, J.F. Gerard, P. Hajji, J.P. Pascault: J Appl Polym Sci, Vol. 73 (1999), pp.2701-2713.

DOI: 10.1002/(sici)1097-4628(19990923)73:13<2701::aid-app18>3.0.co;2-f

Google Scholar