Interfacial Failureof SiN/GaAs Film/Substrate BilayersInduced by Nanoscratch

Article Preview

Abstract:

The failure characteristics of silicon nitride thin film deposited on GaAs substrate were investigated by use of nanoscratch. It was found that the film started to failvia delamination or buckling, which should beattributed to interfacial shear stress. The cracks were then formed and propagated around the edge of the delaminated film before it was chipped away by the moving tip. A normal load of 6.5 mN, corresponding to a depth of 150 nm, was found to be the critical threshold for theinterfacial failure. The fracture energy release rateof the film/substrate interface, or the work of adhesion, was calculated as 2.90 J/m2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

1856-1861

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.L. Smith, S.D. Collins, Sensors and Actuators A: Physical, Vol. 23 (1990), p.830.

Google Scholar

[2] Y. Hwangbo, J.M. Park, W.L. Brown, J.H. Goo, H.J. Lee, S. Hyun, Microelectronic Engineering, Vol. 95 (2012), p.34.

Google Scholar

[3] H. Huang, K.J. Winchester, Y. Liu, X.Z. Hu, C.A. Musca, J.M. Dell, L. Faraone, J. Micromech. Microeng., Vol. 15 (2005), p.608.

Google Scholar

[4] H. Huang, K.J. Winchester, A. Suvorova, B.R. Lawn, Y. Liu, X.Z. Hu, J.M. Dell, L. Faraone, Mater. Sci. Eng. A, Vol. 435-436 (2006), p.453.

Google Scholar

[5] H. Huang, J.M. Dell, S. Liu, J. Nanosci. Nanotechnol., Vol. 9 (2009), p.3734.

Google Scholar

[6] N. Lustig, J. Kanicki, J. Appl. Phys., Vol. 65 (1989), p.3951.

Google Scholar

[7] F. Chen, B. Li, R.A. Dufresne, R. Jammy, J. Appl. Phys., Vol. 90 (2001), p.1898.

Google Scholar

[8] O.S. Heavens, Journal De Physique Et Le Radium, Vol. 11 (1950), p.355.

Google Scholar

[9] P. Benjamin, C. Weaver, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 254 (1960), p.163.

Google Scholar

[10] M. Laugier, Thin Solid Films, Vol. 76 (1981), p.289.

Google Scholar

[11] M.T. Laugier, Thin Solid Films, Vol. 117 (1984), p.243.

Google Scholar

[12] M.T. Laugier, J. Mater. Sci., Vol. 21 (1986), p.2269.

Google Scholar

[13] A.J. Perry, Thin Solid Films, Vol. 107 (1983), p.167.

Google Scholar

[14] S.J. Bull, D.S. Rickerby, A. Matthews, A. Leyland, A.R. Pace, J. Valli, Surface and Coatings Technology, Vol. 36 (1988), p.503.

DOI: 10.1016/0257-8972(88)90178-8

Google Scholar

[15] S. Venkataraman, D. Kohlstedt, W. Gerberich, J. Mater. Res., Vol. 7 (1992), p.1126.

Google Scholar

[16] S.K. Venkataraman, D.L. Kohlstedt, W.W. Gerberich, Thin Solid Films, Vol. 223 (1993), p.269.

Google Scholar

[17] H. Deng, T.W. Scharf, J.A. Barnard, J. Appl. Phys., Vol. 81 (1997), p.5396.

Google Scholar

[18] H. Deng, T.W. Scharf, J.A. Barnard, Ieee T Magn, Vol. 33 (1997), p.3151.

Google Scholar

[19] J.L. Hay, R.L. White, B.N. Lucas, W.C. Oliver, Thin-Films - Stresses and Mechanical Properties Vii, Vol. 505 (1998), p.325.

Google Scholar

[20] G. Wei, T. Scharf, J. Zhou, F. Huang, M. Weaver, J. Barnard, Surface and Coatings Technology, Vol. 146 (2001), p.357.

Google Scholar

[21] S.P. Wen, R.L. Zong, F. Zeng, Y. Gao, F. Pan, Wear, Vol. 265 (2008), p.1808.

Google Scholar

[22] Y.C. Huang, S.Y. Chang, C.H. Chang, Thin Solid Films, Vol. 517 (2009), p.4857.

Google Scholar

[23] S. -Y. Chang, Y. -C. Huang, Microelectronic Engineering, Vol. 84 (2007), p.319.

Google Scholar

[24] Y. Akimune, T. Akiba, N. Hirosaki, T. Izumi, J. Mater. Sci., Vol. 29 (1994), p.3243.

Google Scholar

[25] Y.G. Jung, B.R. Lawn, M. Martyniuk, H. Huang and X.Z. Hu, J. Mater. Res., Vol. 19 (2004), p.3076.

Google Scholar