Molecular-Dynamics Simulation of Structure Change for a Molten Cu297 Nanocluster during Rapidly Quenching

Article Preview

Abstract:

Relaxation and local structure changes of a molten Cu297 nanocluster have been studied by molecular dynam ics simulation using embedded atom method when the cluster is rapidly quenched to 850K, 800K, 700K, 600K, 500K, 400K, 300K, 200K, and 100K. With decreasing quenching temperature, details of structure change and relaxation are analyzed. The simulation results show that the final structures are molten at 850K, like-icosahedral geometry at 800K-500K, mainly based on a faced center cubic structure at 400K-200K, non-crystal at 100K. The average energy of atoms is the lowest at 200K. The simulation reveals that the quenching temperature has great affect on the relaxation processes of the Cu297 cluster after β relaxation region.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

267-271

Citation:

Online since:

January 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Gleiter: J. Progr Matter Sci., Vol. 33 (1989), p.223.

Google Scholar

[2] F. Baletto, R.Ferrando: J. Rev Mod Phys., Vol. 77 (2005), p.371.

Google Scholar

[3] R. Liu, J. Y.Li, K. J. Dong: J. Mater. Sci. and Engineer B., Vol. 94 (2002), p.141.

Google Scholar

[4] S. Valkealahti, M. Manninen: J. Phys: Condens. Matter., Vol. 9 (1997) p.4041.

Google Scholar

[5] S.L. Gafner, L.V. Redel, Y.Y. Gafner: J. Journal of Experimental and Theoretical Physics, Vol. 108 (2009), p.784.

Google Scholar

[6] L. Zhang, S. N. Xu, C. B. Zhang, et al.: J. Computational Materials Science, Vol. 47 (2009), p.162.

Google Scholar

[7] H. S. Nam, N. M. Hwang, B. D. Yu, et al.: J. Phys Rev Lett., Vol. 89(2002), pp.275502-1.

Google Scholar

[8] Songning Xu, Lin Zhang, Yang Qi, et al.: Physica B, Vol. 405 (2010), p.632.

Google Scholar

[9] Songning Xu, Ning He, Lin Zhang: Material Science Forum , Vol. 694 (2011), p.908.

Google Scholar

[10] F. F. Chen, H. F. Zhang, F. X. Qin, et al.: J Chem, Phys., Vol. 120 (2004), p.1826.

Google Scholar

[11] R. S. Liu, K. J. Dong, Z. A. Tian, et al.: J. Phys: Condens. Matter., Vol. 19 (2007), p.196103.

Google Scholar

[12] L. Zhang, H. X. Sun: J. Solid State Communications, Vol. 149 (2009) p.1722.

Google Scholar

[13] Z. A. Tian, R. S. Liu, P. Peng: J. Phys. Lett. A, Vol. 373(2009), p.1667.

Google Scholar

[14] Y. Chen, J. X. Zhang, L. Wang: J. Mater. Lett., Vol. 59 (2005), p.676.

Google Scholar

[15] Y. Y. Gafner, S. L.Gafner, P. Entel: J. Physics of the Solid State, Vol. 46 (2004), p.1327.

DOI: 10.1134/1.1778460

Google Scholar

[16] S. L. Gafner, S. V. Kosterin, Y. Y. Gafner: J. Physics of the Solid State, Vol. 49 (2007), p.1558.

Google Scholar

[17] J. Mei, J. W. Davenport, G. W. Fernando: J. Phys. Rev. B, Vol. 43,(1991), p.4653.

Google Scholar

[18] J. D. Danaand, H. C.Andersen: J. J Phys. Chem., Vol. 91,(1987), p.4950.

Google Scholar

[19] H. Jonsson, H. C. Andersen: J. Phys. Rev. lett., Vol. 60 (1988), p.2295.

Google Scholar

[20] Songning Xu, Lin Zhang, Caibei Zhang, et al.: Acta Metallurgica Sinica, Vol. 43 (2007), p.379.

Google Scholar

[21] Ning He, Songning Xu, Lin Zhang: Current Nanoscience, Vol. 8 (2012), p.38.

Google Scholar

[22] Q. N. Fan, W. Li, L. Zhang: Acta Physics Sinica, Vol. 59(2010), p.2428.

Google Scholar

[23] Songning Xu, Ning He, Lin Zhang: Material Science Forum , Vol. 694 (2011), p.908.

Google Scholar