Structure and Electrochemical Performances of LiFePO4/C Composite Cathode Coating with Different Carbon Sources for Lithium Ion Batteries

Article Preview

Abstract:

Three kinds of carbon resources, poly(vinyl alcohol), phenol-formaldehyde resin and epoxy resin, were used to prepare the LiFePO4/C composite (LFPC-1, LFPC-2, LFPC-3). XRD patterns show that the LFPC composites possess the typical olivine structure. The particle size and the reunited degree of LFPC-1 are smaller than those of LFPC-2 and LFPC-3. The discharge capacities of LFPC-1 at different C-rates are also much higher than those of the other two samples. Its discharge capacities at 0.1 C and 1 C are 158.8 mAh g-1 and 136.20 mAh g-1. Its discharge curve can maintain the stable potential platform of 3.3 V at the rate of 1 C. LFPC-1 possesses the highest electrical conductivity of 5.76×10-2 S•cm-1. This is because the ID/IG value of 1.20 in Raman spectra is much lower than that of LFPC-2 and LFPC-3. The selected area electron diffraction in the TEM of LFPC-1 shows directly that the graphitized carbon is formed on the cover surface of LFPC-1 composite.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 652-654)

Pages:

865-870

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough: J. Electrochem. Soc. Vol. 144 (1997), p.1188.

Google Scholar

[2] P.S. Herle, B. Ellis, N. Coombs and L.F. Nazar: Nat. Mater. Vol. 3 (2004), p.147.

Google Scholar

[3] S.Y. Chung, J.T. Bloking and Y.M. Chiang: Nat. Mater. Vol. 1 (2002), p.123.

Google Scholar

[4] J.F. Ni, H.H. Zhou, J.T. Chen and X.X. Zhang: Mater. Lett. Vol. 59 (2005), p.2361.

Google Scholar

[5] T.H. Teng, M.R. Yang, S.H. Wu and Y.P. Chiang: Solid State Commun. Vol. 142 (2007), p.389.

Google Scholar

[6] H. Xie and Z.T. Zhou: Electrochim. Acta Vol. 51 (2006), p. (2063).

Google Scholar

[7] R. Yang, X.P. Song, M.S. Zhao and F. Wang: J. Alloys. Compd. Vol. 468 (2009), p.365.

Google Scholar

[8] D.Y. Wang, H. Li, S.Q. Shi, X.J. Huang and L.Q. Chen: Electrochim. Acta Vol. 50 (2005), p.2955.

Google Scholar

[9] M.R. Roberts, G. Vitins and J.R. Owen: J. Power Sources Vol. 179 (2008), p.754.

Google Scholar

[10] H.M. Xie, R.S. Wang, J.R. Ying, L.Y. Zhang, A.F. Jalbout, H.Y. Yu, G.L. Yang, X.M. Pan and Z.M. Su: Adv. Mater. Vol. 18 (2006), p.2609.

Google Scholar

[11] C.Y. Lai, Q.J. Xu, H.H. Ge, G.D. Zhou and J.Y. Xie: Solid State Ionics Vol. 179 (2008), p.1736.

Google Scholar

[12] X.D. Yan, G.L. Yang, J. Liu, Y.C. Ge, H.M. Xie, X.M. Pan and R.S. Wang: Electrochim. Acta Vol. 54 (2009), p.5770.

Google Scholar

[13] J.K. Kim, J.W. Choi, G. Cheruvally, J.U. Kim, J.H. Ahn, G.B. Cho, K.W. Kim and H.J. Ahn: Mater. Lett. Vol. 61 (2007), p.3822.

Google Scholar

[14] H.C. Shin, W.I. Cho and H. Jang: Electrochim. Acta Vol. 52 (2006), p.1472.

Google Scholar

[15] L. Wang, H.B. Wang, Z.H. Liu, C. Xiao, S.M. Dong, P.X. Han, Z.Y. Zhang, X.Y. Zhang, C.F. Bi and G.L. Cui: Solid State Ionics Vol. 181 (2010), p.1685.

DOI: 10.1016/j.ssi.2010.09.056

Google Scholar

[16] G.T.K. Fey and T.L. Lu: J. Power Sources Vol. 178 (2008), p.807.

Google Scholar