[1]
X. K. Fu, Y. Z. Huo, D. Chen et al. The study on the reservoir characteristics of low rank coal seam in china. China Coalbed Methane. Vol. 3 (2006), pp.42-46.
Google Scholar
[2]
P. C. Painter, M. Sobkowiak, J. Youtcheff. FT-IR study of hydrogen bonding in coal. Fuel. Vol. 66 (1987), p.973–978.
DOI: 10.1016/0016-2361(87)90338-3
Google Scholar
[3]
M. Sobkowiak, P. C. Painter. A comparison of drift and KBr pellet methodologies for the quantitative analysis of functional groups in coal by infrared spectroscopy. Energy Fuels. Vol. 9 (1995), p.359–363.
DOI: 10.1021/ef00050a022
Google Scholar
[4]
J. V. Ibarra, E. Munoz, R. Moliner. FT-IR study of the evolution of coal structure during the coalification process. Org Geochem. Vol. 24 (1996), pp.725-735.
DOI: 10.1016/0146-6380(96)00063-0
Google Scholar
[5]
A. D. Alessio, P. Vergamini, E. Benedetti. FT-IR investigation of the structural changes of Sulcis and South Africa coals under progressive heating in vacuum. Fuel. Vol. 79 (2000), p.1215–1220.
DOI: 10.1016/s0016-2361(99)00257-4
Google Scholar
[6]
M. A. Ahmed, M. J. Blesa, R. Juan, R.E. Vandenberghe. Characterisation of an Egyptian coal by Mossbauer and FT-IR spectroscopy. Fuel. Vol. 82 (2003), p.1825–1829.
DOI: 10.1016/s0016-2361(03)00131-5
Google Scholar
[7]
X.G. Sun. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microspectroscopy. Spectrochimica Acta Part A. Vol. 62 (2005), p.557–564.
DOI: 10.1016/j.saa.2005.01.020
Google Scholar
[8]
W.H. Geng, Tsunenori Nakajima, Hirokazu Takanashi, Akira Ohki. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry. Fuel. Vol. 88 (2009), p.139–144.
DOI: 10.1016/j.fuel.2008.07.027
Google Scholar
[9]
J. Zhan, H. H. Wang , S. N. Song, Y. Hu, J. Li. Role of an additive in retarding coal oxidation at moderate temperatures. Proceedings of the Combustion Institute. Vol. 46 (2010), pp.1-8.
DOI: 10.1016/j.proci.2010.06.046
Google Scholar
[10]
E. Lankinen, G. Sundholm, P. Talonen, Characterization of a poly (3-methyl thiophene) film by an in-situ dc resistance measurement technique and in-situ FTIR spectroelectrochemistry,Journal of Electroanalytical Chemistry. Vol. 447 (1998).
DOI: 10.1016/s0022-0728(98)00012-6
Google Scholar
[11]
C. Paul, H. Andrew , In-situ techniques in electrochemistry — ellipsometry and FTIR. Electrochimica Acta. Vol. 45 (2000), p.2443–2459.
DOI: 10.1016/s0013-4686(00)00332-7
Google Scholar
[12]
X. Y. Wang, Z. X. Deng, B. K Jin, Y. P. Tian. Electrochemical and in situ FTIR studies of biferrocene platinum (II) complex, Electrochimica Acta. Vol. 47 (2002), p.1537–1543.
DOI: 10.1016/s0013-4686(01)00880-5
Google Scholar
[13]
T. Nan-Yu , In situ FTIR: A versatile tool for the study of industrial catalysts, Catalysis Today. Vol. 113 (2006), p.58–64.
DOI: 10.1016/j.cattod.2005.11.010
Google Scholar
[14]
Z.Y. Zhou, Q. Wang, J. Lin. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media, Electrochimica Acta. Vol. 71 (2010), pp.1-5.
DOI: 10.1016/j.electacta.2010.02.071
Google Scholar
[15]
C.Z. Li, L. Chen, Effendi Widjaja, Marc Garland, The catalytic binuclear elimination reaction: Confirmation from in situ FTIR studies of homogeneous rhodium catalyzed hydroformylation, Catalysis Today. Vol. 155 (2010), p.261–265.
DOI: 10.1016/j.cattod.2009.10.018
Google Scholar
[16]
Q.N. Dong, X.Y. Chen, G.Q. Jin, Y.D. Gu. Study of Lignite Oxidation at Low Temperatures by FTIR Emission Spectroscopy. Journal of Fuel Chemistry and Technolog. Vol. 25 No. 4, Aug. (1997).
Google Scholar
[17]
W. Nakorn, N. Hiroyuki a, M. Kouichi. Effect of pre-oxidation at low temperature on the carbonization behavior of coal. Fuel. Vol. 81 (2002), pp.1477-1484.
DOI: 10.1016/s0016-2361(02)00083-2
Google Scholar
[18]
J. Feng, W.Y. LI, K.C. XIE. Thermal decomposition behaviors of lignite by pyrolysis-FTIR. Energy Source. Vol. 28 (2006), pp.167-175.
Google Scholar