[1]
H. DuboisFerriere, R. Meier, and L. Fabre. A comprehensive platform for wireless sensornetwork applications, Proceedings of the sixth international conference on information processing in sensor networks, pp.358-365, (2006).
Google Scholar
[2]
S. P. Beeby, M. J. Tudor, N.M. White. Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 2006(17), pp.175-195, (2006).
DOI: 10.1088/0957-0233/17/12/r01
Google Scholar
[3]
S. Roundy. Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion, Ph.D. dissertation, University of California at Berkerley, (2003).
Google Scholar
[4]
S. M. Alamouti. Simple transmit diversity technique for wireless communications, IEEE Journal on select areas in communications, Vol. 16, No. 8, pp.1451-1458, (1998).
DOI: 10.1109/49.730453
Google Scholar
[5]
Y. B. Jeon, R. Sood, J. H. Jeong and S. G. Kim. MEMS power generator with transverse mode, Thin Film PZT. Sensors Actuators A, Vol. 122, pp.16-22, (2005).
DOI: 10.1016/j.sna.2004.12.032
Google Scholar
[6]
S. Roundy, P. K. Wright. A piezoelectric vibration based generator for wireless electronics, Smart Mater. Struct, 13, pp.1131-1142, (2004).
DOI: 10.1088/0964-1726/13/5/018
Google Scholar
[7]
N. E. DuToit, B. L. Wardle, S. G Kim. Design considerations for MEMS-Scale Piezoelectric mechanical vibration energy harvesters, Integrated Ferroelectrics, Vol. 71, No. 1, pp.121-160, (2005).
DOI: 10.1080/10584580590964574
Google Scholar
[8]
T. Yang, Y. Lin, X. J. Tian, Y. H. Feng. Modeling and analysis of piezoelectric bimorph cantilever used for vibration energy harvesting, 8th IEEE International Conference on Control and Automation, p.1783–1788, (2010).
DOI: 10.1109/icca.2010.5524278
Google Scholar
[9]
Y. C. Shu, I. C. Lien. Analysis of power output for piezoelectric energy harvesting systems., Smart Mater. Struct, Vol. 15, pp.1499-1512, (2006).
DOI: 10.1088/0964-1726/15/6/001
Google Scholar
[10]
Y. C. Shu, I. C. Lien. Efficiency of energy conversion for a piezoelectric power harvesting system, Micromech. Microeng., Vol. 16, pp.2429-2438, (2006).
DOI: 10.1088/0960-1317/16/11/026
Google Scholar
[11]
S. N Jiang, X. F Li, S. H. Guo et al. Performance of a piezoelectric bimorph for harvesting vibration energy, Smart Mater. Struct., Vol. 14, pp.769-774, (2005).
DOI: 10.1088/0964-1726/14/4/036
Google Scholar
[12]
D. Blazevic, S. Zelenika, G. Gregov. Mechanical analysis of piezoelectric vibration energy harvesting devices, Proceedings of the 33rd International Convention on Information and Communication Technology, Electronics and Microelectronics, pp.121-126, (2010).
Google Scholar
[13]
S. B. Shan, J. B. Yuan, T. Xie, W. S. Chen. Design and experiment of multiple piezoelectric bimorphs for scavenging vibration energy, International Journal of Applied Electromagnetics and Mechanics, Vol. 34, p.265–275, (2010).
DOI: 10.3233/jae-2010-1317
Google Scholar
[14]
M. Kim, M. Hoegen, J. Dugundji, B. L. Wardle. Modeling and experimental verification of proof mass effects on vibration energy harvester performance, Smart Materials and Structures, Vol. 19, No. 4, 045023, (2010).
DOI: 10.1088/0964-1726/19/4/045023
Google Scholar
[15]
Y. M. Zhang. Mechanical vibration, Tsinghua university press, (2007).
Google Scholar
[16]
C. Zhang. Machinery dynamics, Higher education press, (2008).
Google Scholar
[17]
J. P. Ayers, D. W. Greve, I. J. Oppenheim. Energy scavenging for sensor applications using structural strains, Proceedings of SPIE - The International Society for Optical Engineering. pp.364-375, (2003).
Google Scholar
[18]
J. Jia. Energy conversion and storage characteristics research on piezoelectric generators, Master dissertation, University of Jilin, (2008).
Google Scholar