Nanosilica and its Future Prospects in Concrete

Article Preview

Abstract:

The implementation of nanotechnology in concrete has led to an active incorporation of nano silica in concrete in a global level. Different methods of nano silica production are available and vary from expensive to cost-effective routes. Nano silica particle sizes and their chemical and physical nature depend on the method of production. Several types of dispersed nano silica are recommended to be used in concrete due to practical reason. However, the dry powders of nano silica particles are difficult to be dispersed in concrete and require special types or family of nano superplasticizers. The effective addition of nS leads to C-S-H with improved cementitious properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

50-55

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Freedonia: World specialty silicas (2010).

Google Scholar

[2] D.J. Lieftink: The preparation and characterization of silica from acid treatment of olivine, PhD thesis, Utrecht University (1997).

Google Scholar

[3] R.D. Schuiling: A method for neutralizing waste sulphuric acid by adding a silicate, US 1987/4707348; Utrecht University, European Patent Application no 8590343. 5. (1986).

Google Scholar

[4] M.F. Zawrah, A.A. El-Kheshen, H. M Abd-El-Aal: Facile and economic synthesis of silica nanoparticles, Journal of Ovonic Research, 5 (5), pp.129-133 (2009).

Google Scholar

[5] J. Van Herk, H.S. Pietersen and R.D. Schuiling: Neutralization of industrial waste acids with olivine -The dissolution of forsteritic olivine at 40–70°C, Chemical Geology, 76(341), (1989).

DOI: 10.1016/0009-2541(89)90102-2

Google Scholar

[6] R.C.L. Jonckbloedt: The dissolution of Olivine in acid, a cost effective process for the elimination of waste acids, PhD thesis, Utrecht University (1997).

Google Scholar

[7] D.J. Lieftink: The preparation and characterization of silica from acid treatment of Olivine, Ph.D. Thesis, Utrecht University, The Netherlands (1997).

Google Scholar

[8] G. Gunnarsson, O. Wallevik, L. Ekornrod, B. Lengseth and P. Engseth: Process for production of precipitated silica from olivine, US patent No. 2009/263657 A1.

Google Scholar

[9] A. Lazaro: Nano-silica production by a sustainable process; application in building materials", 8th fib PhD Symposium in Kgs. Lyngby, Denmark, pp.1-6 (2010).

Google Scholar

[10] K. Sobolev, I. Flores and R. Hermosillo: Nanomaterials and Nanotechnology for High performance cement composites, Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, November 7, Denver, USA, pp.91-118 (2006).

DOI: 10.14359/20213

Google Scholar

[11] K. Sobolev and M.F. Gutirrez: How nanotechnology can change the concrete word-Part 1, American Ceramic Society Bulletin, 84(10), pp.15-17 (2005).

Google Scholar

[12] W.G. Kreyling, M. Semmler-Behnke and Q. Chaudhry: A complementary definition of nanomaterial, NanoToday, 5, pp.165-168 (2010).

DOI: 10.1016/j.nantod.2010.03.004

Google Scholar

[13] A. Dunster: Silica fume in concrete, Information paper N IP 5/09, IHS BRE Press, Garston, U.K. (2009).

Google Scholar

[14] Y. Qing, Z. Zenan, K. Deyu and C.H. Rongshen: Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Construction and Building Materials, 21, p.539–545 (2007).

DOI: 10.1016/j.conbuildmat.2005.09.001

Google Scholar

[15] G. Hüsken and H.J.H. Brouwers: A new mix design concept for earth-moist concrete: A theoretical and experimental study, Cement and Concrete Research, 38, pp.1246-1259 (2008).

DOI: 10.1016/j.cemconres.2008.04.002

Google Scholar

[16] L. Senff, J.A. Labrincha, V.M. Ferreira, D. Hotza and W.L. Repette: Effect of nanosilica on rheology and fresh properties of cement pastes and mortars, Construction and Building Materials, 23, p.2487–2491 (2009).

DOI: 10.1016/j.conbuildmat.2009.02.005

Google Scholar

[17] P. Mondal, S.P. Shah, L.D. Marks and J.J. Gaitero: Comparative study of the effects of microsilica and nanosilica in concrete, Journal of the Transportation Research Board, No. 2141, Transportation Research Board of the National Academies, p.6–9 (2010).

DOI: 10.3141/2141-02

Google Scholar

[18] J.J. Gaitero, I. Campillo and A. Guerrero: Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles, Cement and Concrete Research, 38, p.1112–1118 (2008).

DOI: 10.1016/j.cemconres.2008.03.021

Google Scholar

[19] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck: Ordered Mesoporous Molecular-Sieves Synthesized by A Liquid-Crystal Template Mechanism, Nature, 359, pp.710-712 (1992).

DOI: 10.1038/359710a0

Google Scholar

[20] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, pp.548-552 (1998).

DOI: 10.1126/science.279.5350.548

Google Scholar

[21] S. Sakka and H. Kosuko: Handbook of sol-gel science and technology, Volume I: Solgel Processing, Kluwer Academic Publisher, New York, pp.9-10 (2000).

Google Scholar

[22] R.C.L. Jonckbloedt: Olivine dissolution in sulphuric acid at elevated temperatures-implications for the olivine process, an alternative waste acid neutralizing process, Journal of Geochemical Exploration, 62, p.337–346 (1998).

DOI: 10.1016/s0375-6742(98)00002-8

Google Scholar

[23] ACI Committee 234: Guide for the use of silica fume in concrete, American Concrete Institute (2006).

Google Scholar

[24] U. Brinkmann, M. Ettlinger, D. Kerner and R. Schmoll: Synthetic Amorphous Silica. In: Bergna HE, Roberts WO (eds) Colloidal Silica, Fundamentals and applications. Taylor and Francis group, p.575–588 (2006).

Google Scholar

[25] D. Napierska, L.C.J. Thomassen, D. Lson, J.A. Martens and P.H. Hoet: The nanosilica hazard: another variable entity, Particle and Fibre Toxicology, 7(39), pp.1-32 (2010).

DOI: 10.1186/1743-8977-7-39

Google Scholar

[26] W. Stöber, W, Fink and E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range, J Colloid Interface Sci, 26, pp.62-69 (1968).

DOI: 10.1016/0021-9797(68)90272-5

Google Scholar

[27] B. Zdenek, J.M. Peter, Bartos, J. Nemecek, V. Smilauer and J. Zeman: Nanotechnology in Construction, Proceedings of the NICOM3 edited by Metallic oxide-Nano silica, Nanoalumina, Nanotitania, p.244.

Google Scholar

[28] R.K. Iler: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica New York, Wiley, (1979).

Google Scholar

[29] C.F. Brinker, G.W. Schrerer: Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, 2nd edition. London, Academic Press (1990).

Google Scholar

[30] K.L. Lin, W.C. Chang, D.F. Lin, H.L. Luo and M.C. Tsai: Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar, Journal of Environmental Management, 88 pp.708-714 (2008).

DOI: 10.1016/j.jenvman.2007.03.036

Google Scholar

[31] J. Bjornstrom, A. Martinelli, A. Matic, L. Borjesson, and I. Panas: Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement, Chemical Physics Letters, 392, p.242–248 (2004).

DOI: 10.1016/j.cplett.2004.05.071

Google Scholar

[32] L. Senff, D. Hotza, W.L. Repette, V.M. Ferreira, and J.A. Labrincha: Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design, Constr Build Mater, doi: 10. 1016/j. conbuildmat. 2010. 01. 012 (2010).

DOI: 10.1016/j.conbuildmat.2010.01.012

Google Scholar

[33] T. Ji: Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, Cement and Concrete Research, 35, p.1943 – 1947 (2005).

DOI: 10.1016/j.cemconres.2005.07.004

Google Scholar

[34] G. Li: Properties of high-volume fly ash concrete incorporating nano-SiO2, Cement and Concrete Research, 34, p.1043–1049 (2004).

DOI: 10.1016/j.cemconres.2003.11.013

Google Scholar

[35] G. Quercia, G. Hüsken and H.J.H. Brouwers: Water demand of amorphous nano silica and its impact on the workability of cement paste, Cement and Concrete Research, 42, pp.344-357 (2012).

DOI: 10.1016/j.cemconres.2011.10.008

Google Scholar

[36] L. Gengying: Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, 34, pp.1034-1049 (2004).

DOI: 10.1016/j.cemconres.2003.11.013

Google Scholar

[37] H. Li, H. Xiao, J. Yuan and J. Ou: Microstructure of cement mortar with nano-particles, Composites Part B: Engineering, 35, pp.185-189 (2004).

DOI: 10.1016/s1359-8368(03)00052-0

Google Scholar

[38] Y. Qing, Z. Zenan, K. Deyu and C. Rongshen: Influence of nano-SiO2 addition on properties of hardened cement pasteas compared with silica fume, Construction and Build Material, 21, pp.539-545 (2005).

DOI: 10.1016/j.conbuildmat.2005.09.001

Google Scholar