[1]
Freedonia: World specialty silicas (2010).
Google Scholar
[2]
D.J. Lieftink: The preparation and characterization of silica from acid treatment of olivine, PhD thesis, Utrecht University (1997).
Google Scholar
[3]
R.D. Schuiling: A method for neutralizing waste sulphuric acid by adding a silicate, US 1987/4707348; Utrecht University, European Patent Application no 8590343. 5. (1986).
Google Scholar
[4]
M.F. Zawrah, A.A. El-Kheshen, H. M Abd-El-Aal: Facile and economic synthesis of silica nanoparticles, Journal of Ovonic Research, 5 (5), pp.129-133 (2009).
Google Scholar
[5]
J. Van Herk, H.S. Pietersen and R.D. Schuiling: Neutralization of industrial waste acids with olivine -The dissolution of forsteritic olivine at 40–70°C, Chemical Geology, 76(341), (1989).
DOI: 10.1016/0009-2541(89)90102-2
Google Scholar
[6]
R.C.L. Jonckbloedt: The dissolution of Olivine in acid, a cost effective process for the elimination of waste acids, PhD thesis, Utrecht University (1997).
Google Scholar
[7]
D.J. Lieftink: The preparation and characterization of silica from acid treatment of Olivine, Ph.D. Thesis, Utrecht University, The Netherlands (1997).
Google Scholar
[8]
G. Gunnarsson, O. Wallevik, L. Ekornrod, B. Lengseth and P. Engseth: Process for production of precipitated silica from olivine, US patent No. 2009/263657 A1.
Google Scholar
[9]
A. Lazaro: Nano-silica production by a sustainable process; application in building materials", 8th fib PhD Symposium in Kgs. Lyngby, Denmark, pp.1-6 (2010).
Google Scholar
[10]
K. Sobolev, I. Flores and R. Hermosillo: Nanomaterials and Nanotechnology for High performance cement composites, Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, November 7, Denver, USA, pp.91-118 (2006).
DOI: 10.14359/20213
Google Scholar
[11]
K. Sobolev and M.F. Gutirrez: How nanotechnology can change the concrete word-Part 1, American Ceramic Society Bulletin, 84(10), pp.15-17 (2005).
Google Scholar
[12]
W.G. Kreyling, M. Semmler-Behnke and Q. Chaudhry: A complementary definition of nanomaterial, NanoToday, 5, pp.165-168 (2010).
DOI: 10.1016/j.nantod.2010.03.004
Google Scholar
[13]
A. Dunster: Silica fume in concrete, Information paper N IP 5/09, IHS BRE Press, Garston, U.K. (2009).
Google Scholar
[14]
Y. Qing, Z. Zenan, K. Deyu and C.H. Rongshen: Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Construction and Building Materials, 21, p.539–545 (2007).
DOI: 10.1016/j.conbuildmat.2005.09.001
Google Scholar
[15]
G. Hüsken and H.J.H. Brouwers: A new mix design concept for earth-moist concrete: A theoretical and experimental study, Cement and Concrete Research, 38, pp.1246-1259 (2008).
DOI: 10.1016/j.cemconres.2008.04.002
Google Scholar
[16]
L. Senff, J.A. Labrincha, V.M. Ferreira, D. Hotza and W.L. Repette: Effect of nanosilica on rheology and fresh properties of cement pastes and mortars, Construction and Building Materials, 23, p.2487–2491 (2009).
DOI: 10.1016/j.conbuildmat.2009.02.005
Google Scholar
[17]
P. Mondal, S.P. Shah, L.D. Marks and J.J. Gaitero: Comparative study of the effects of microsilica and nanosilica in concrete, Journal of the Transportation Research Board, No. 2141, Transportation Research Board of the National Academies, p.6–9 (2010).
DOI: 10.3141/2141-02
Google Scholar
[18]
J.J. Gaitero, I. Campillo and A. Guerrero: Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles, Cement and Concrete Research, 38, p.1112–1118 (2008).
DOI: 10.1016/j.cemconres.2008.03.021
Google Scholar
[19]
C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli and J.S. Beck: Ordered Mesoporous Molecular-Sieves Synthesized by A Liquid-Crystal Template Mechanism, Nature, 359, pp.710-712 (1992).
DOI: 10.1038/359710a0
Google Scholar
[20]
D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, pp.548-552 (1998).
DOI: 10.1126/science.279.5350.548
Google Scholar
[21]
S. Sakka and H. Kosuko: Handbook of sol-gel science and technology, Volume I: Solgel Processing, Kluwer Academic Publisher, New York, pp.9-10 (2000).
Google Scholar
[22]
R.C.L. Jonckbloedt: Olivine dissolution in sulphuric acid at elevated temperatures-implications for the olivine process, an alternative waste acid neutralizing process, Journal of Geochemical Exploration, 62, p.337–346 (1998).
DOI: 10.1016/s0375-6742(98)00002-8
Google Scholar
[23]
ACI Committee 234: Guide for the use of silica fume in concrete, American Concrete Institute (2006).
Google Scholar
[24]
U. Brinkmann, M. Ettlinger, D. Kerner and R. Schmoll: Synthetic Amorphous Silica. In: Bergna HE, Roberts WO (eds) Colloidal Silica, Fundamentals and applications. Taylor and Francis group, p.575–588 (2006).
Google Scholar
[25]
D. Napierska, L.C.J. Thomassen, D. Lson, J.A. Martens and P.H. Hoet: The nanosilica hazard: another variable entity, Particle and Fibre Toxicology, 7(39), pp.1-32 (2010).
DOI: 10.1186/1743-8977-7-39
Google Scholar
[26]
W. Stöber, W, Fink and E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range, J Colloid Interface Sci, 26, pp.62-69 (1968).
DOI: 10.1016/0021-9797(68)90272-5
Google Scholar
[27]
B. Zdenek, J.M. Peter, Bartos, J. Nemecek, V. Smilauer and J. Zeman: Nanotechnology in Construction, Proceedings of the NICOM3 edited by Metallic oxide-Nano silica, Nanoalumina, Nanotitania, p.244.
Google Scholar
[28]
R.K. Iler: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica New York, Wiley, (1979).
Google Scholar
[29]
C.F. Brinker, G.W. Schrerer: Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, 2nd edition. London, Academic Press (1990).
Google Scholar
[30]
K.L. Lin, W.C. Chang, D.F. Lin, H.L. Luo and M.C. Tsai: Effects of nano-SiO2 and different ash particle sizes on sludge ash–cement mortar, Journal of Environmental Management, 88 pp.708-714 (2008).
DOI: 10.1016/j.jenvman.2007.03.036
Google Scholar
[31]
J. Bjornstrom, A. Martinelli, A. Matic, L. Borjesson, and I. Panas: Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement, Chemical Physics Letters, 392, p.242–248 (2004).
DOI: 10.1016/j.cplett.2004.05.071
Google Scholar
[32]
L. Senff, D. Hotza, W.L. Repette, V.M. Ferreira, and J.A. Labrincha: Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design, Constr Build Mater, doi: 10. 1016/j. conbuildmat. 2010. 01. 012 (2010).
DOI: 10.1016/j.conbuildmat.2010.01.012
Google Scholar
[33]
T. Ji: Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2, Cement and Concrete Research, 35, p.1943 – 1947 (2005).
DOI: 10.1016/j.cemconres.2005.07.004
Google Scholar
[34]
G. Li: Properties of high-volume fly ash concrete incorporating nano-SiO2, Cement and Concrete Research, 34, p.1043–1049 (2004).
DOI: 10.1016/j.cemconres.2003.11.013
Google Scholar
[35]
G. Quercia, G. Hüsken and H.J.H. Brouwers: Water demand of amorphous nano silica and its impact on the workability of cement paste, Cement and Concrete Research, 42, pp.344-357 (2012).
DOI: 10.1016/j.cemconres.2011.10.008
Google Scholar
[36]
L. Gengying: Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, 34, pp.1034-1049 (2004).
DOI: 10.1016/j.cemconres.2003.11.013
Google Scholar
[37]
H. Li, H. Xiao, J. Yuan and J. Ou: Microstructure of cement mortar with nano-particles, Composites Part B: Engineering, 35, pp.185-189 (2004).
DOI: 10.1016/s1359-8368(03)00052-0
Google Scholar
[38]
Y. Qing, Z. Zenan, K. Deyu and C. Rongshen: Influence of nano-SiO2 addition on properties of hardened cement pasteas compared with silica fume, Construction and Build Material, 21, pp.539-545 (2005).
DOI: 10.1016/j.conbuildmat.2005.09.001
Google Scholar