Quantum Confinement of GaAs Nanocrystals Deposited on PMMA Microspheres Using Pulsed Laser Ablation

Article Preview

Abstract:

A modified pulsed laser deposition (PLD) was employed to deposit GaAs nanocrystals on the surface of PMMA microspheres. This novel approach is distinguished by the fact that laser ablated materials are deposited uniformly onto the surface of spherical particles that are held constantly in a particle fludization unit. The XRD, SEM, EDX, TEM, EDP and PL results confirmed that cubic structured GaAs nanocrystals were deposited uniformly on the surface of PMMA microspheres with an average diameter of about 15 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Brus: Appl. Phys. A Vol. 53 (1991), p.465.

Google Scholar

[2] A.D. Yoffe: Adv. Phys. Vol. 42 (1993), p.173.

Google Scholar

[3] T. Yoshida, S. Takeyama, Y. Yameda and K. Mutoh: Appl. Phys. Lett. Vol. 68 (1996), p.1772.

Google Scholar

[4] D.H. Lowndes, C.M. Rouleau, T.G. Thundat, G. Duscher, E.A. Kenik and S.J. Pennycook: J. Mater. Res. Vol. 14 (1999), p.359.

DOI: 10.1557/jmr.1999.0053

Google Scholar

[5] D. Nesheva and H. Hofmeister: Solid State Commun. Vol. 114 (2000), p.511.

Google Scholar

[6] C. Weisbuch in: Quantum Semiconductor Structures, Academic, San Diego, CA, (1991).

Google Scholar

[7] U. Woggon in: Optical Properties of Semiconductor Quantum Dots, Springer, Berlin, (1997).

Google Scholar

[8] C.J. Sandorff, J.P. Harbicon, R. Ramesh, M.J. Andrejco, M.S. Hegde, D.M. Hwang, C.C. Chang and E.M. Vogel: Science Vol. 245 (1989), p.391.

Google Scholar

[9] A.J. Nozik, H. Uchida, P.V. Kamat and C. Curtis: Isr. J. Chem. Vol. 33 (1993), p.15.

Google Scholar

[10] M. Hirasawa, N. Ichikawa, Y. Egashira, I. Honma and H. Komiyama: Appl. Phys. Lett. Vol. 67 (1995), p.3483.

DOI: 10.1063/1.115254

Google Scholar

[11] Y. Kanemitsu, H. Tanaka, T. Kushida, K.S. Min and H.A. Atwater: J. Appl. Phys. Vol. 86 (1999), p.1762.

Google Scholar

[12] C.W. White, J.D. Budai, J.G. Zhu, S.P. Withrow, R.A. Zhur, D.M. Hembree, D.O. Henderson, A. Ueda, Y.S. Tung, R. Mu and R.H. Magruder: J. Appl. Phys. Vol. 79 (1996), p.1876.

DOI: 10.2172/219351

Google Scholar

[13] S. Okamoto, Y. Kanemitsu, K.S. Min and H.A. Atwater: Appl. Phys. Lett. Vol. 73 (1998), p.1829.

Google Scholar

[14] J.H. Ryu, J. -W. Yoon, C.S. Lim and K.B. Shim: Appl. Phys. A Vol. 87 (2007), p.625.

Google Scholar

[15] Y. Kousaka, Y. Endo, M. Alsono, H. Ichitoubo and A. Fukui: Adv. Powder Technol. Vol. 6 (1995), p.11.

Google Scholar

[16] I. Saito and M. Sena: Kona Vol. 13 (1993), p.191.

Google Scholar

[17] D.L. Smith in: Thin-film Deposition, Principles & Practice, McGraw Hill, Inc., New York, (1995).

Google Scholar

[18] V. Craciun and D. Craciun: Appl. Surf. Sci. Vol. 109/110 (1997), p.312.

Google Scholar

[19] K.D. Rinnen, K.D. Kolenbrander, A.M. Desantiolo and M.L. Mandich: J. Chem. Phys. Vol. 96 (1996), p.4088.

Google Scholar

[20] D.L. Lowdnes, D.B. Geohegan, A.A. Puretsky, D.P. Norton and C.M. Rouleau: Science Vol. 272 (1996), p.898.

Google Scholar

[21] B.D. Cullity in: Elements of X-ray Diffraction, 3rd ed., Prentice Hall, New Jersey, (2001).

Google Scholar

[22] E.H. Bogardus and H.B. Bebb: Phys. Rev. Vol. 176 (1968), p.993.

Google Scholar

[23] Y. Nagamune, M. Nishioka, S. Tsukamoto and Y. Arakawa: Appl. Phys. Lett. Vol. 64 (1994), p.2495.

Google Scholar

[24] M.A. Malik, P. O'Brien, S. Norager and J. Smith: J. Mater. Chem. Vol. 13 (2003), p.2591.

Google Scholar

[25] M.V. Rama Krishna and R.A. Friesner: J. Chem. Phys. Vol. 95 (1991), p.8309.

Google Scholar

[26] M.A. Olshavsky, A.N. Goldstein and A.P. Alivisatos: J. Am. Chem. Soc. Vol. 112 (1990), p.9438.

Google Scholar

[27] R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Susuki and H. Kuroda: Appl. Phys. B Vol. 80 (2005), p.595.

Google Scholar