Simulated Comparison of Impact Pad and the Experimental Swirling Chamber in Tundish

Article Preview

Abstract:

In this paper is compared residence times of tundish equipped with Turbostop and tundish equipped with experimental swirl chamber. Set of measurements in this paper was performed in the Laboratory simulated flow processes (LSSP). Water model is assembled at scale 1:3 to original. Measurements were evaluated by graphical measuring of water conductivity variation at tundish inlet and outlet by adding potassium chloride into tundish inlet and visually where KMnO4 was used as an indicator.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-85

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zariadenie na plynulé odlievanie, Otočný stojan paniev <http: /www. schaeffler. sk/content. schaeffler. sk/sk/branches/industry/metal_extraction_and_processing/applications_3/steel_production/continuous_casting_plant/continuous_casting_plant. jsp, >.

Google Scholar

[2] Continuous Caster : Ladle Turret <http: /www. vecasteel. com/default. asp?hareket=prdgrp3-1>.

Google Scholar

[3] Z. Dolejší: Plynulé odlévaní ocele 1. Díl, Tepelné technologické premeny zariadenia plynulého odlievania ocele, SNTL, Praha (1987).

Google Scholar

[4] Plynulé odlievanie. Liaca panva Košice, (2009). <http: /web. tuke. sk/hf-kmzaz/webplynuleodlievanie/pages/05liaca%20panva. html>.

Google Scholar

[5] M. Puškár:  Záznamový systém, In: Strojárstvo. Roč. 14, č. 3 (2010), s. 72/6-73/7. ISSN 1335–2938.

Google Scholar

[6] M. Tkadleckova, K. Gryc, K. Michalek: Numerical and Physical Modelling of Tundish Metallurgy Processes, Metec InSteelCon, Düsseldorf, Germany, July (2011).

Google Scholar

[7] B.G. Thomas: Continuous Casting: Modelling, The Encyclopedia of Advanced Materials, (J. Dantzig, A. Greenwell, J. Michalczyk, eds. ) Pergamon Elsevier Science Ltd., Oxford, UK, Vol. 2, 2001, p.8, Revision 3, Oct. 12, (1999).

Google Scholar

[8] J. Štetina: Dynamický model teplotního pole plynulé odléváni bramy [online], Brno, (2007) <www. ottp. fme. vutbr. cz, >.

Google Scholar

[9] Z. Dolejší: Plynulé odlévaní ocele 2. Díl, Nové systémy technológie zariadenia plynulého odlievania ocele, SNTL, Praha. (1988).

Google Scholar

[10] Water model study of swirling flow Tundish [online]. China. (2007) <http: /globethesis. com/?t=2121360185977488>.

Google Scholar

[11] R. Bajer: Modelovanie nepretržitého odlievania ocele, Diplomová práca, Technická univerzita, Hutnícka fakulta, Košice. (2012).

Google Scholar

[12] B. Buľko, J. Kijac: Optimization of tundish equipment [online]. Košice. (2010) <http: /www. ams. tuke. sk/data/ams_online/2010/number2/mag01/mag01. pdf>.

Google Scholar

[13] B. Buľko, J. Kijac, P. Demeter: Influence Variation of Steel Impact Point in Tundish, Acta Metallurgica Slovaca Conference, Vol. 1, (2010), No. 4, pp.140-142.

DOI: 10.12776/amsc.v4i0.226

Google Scholar

[14] P. Kováč, et al., Metalurgija, Vol. 9, (2003), No. 4, p.249 – 255.

Google Scholar

[15] J. Kijac, P. Kováč, E. Steranka, V. Masek, P. Marek : The current status of Tundish covering slags in slab caster plant, Metallurgija, Vol. 43, (2004), , No. 1, pp.59-62.

Google Scholar

[16] J. Harangozó, I. Tureková, M. Buštorová: Study of flame heat flux of selected materials. In: International Doctoral Seminar 2011 : Proceeding. Smolenice Castle, SR. - Trnava : AlumniPress, (2011), ISBN 978-80-8096-145-9. pp.130-138.

Google Scholar