[1]
M.S. Hoffman, S. Martin, W. Chio, Environmantal application of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
Google Scholar
[2]
M. Grätzel, Photoelectrochemical cells, Nature. 414 (2001) 338-344.
Google Scholar
[3]
M. Andersson, L. Osterlund, S. Ljungstrom, A. Palmqvist, Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol, J. Phys. Chem. B 106 (2002).
DOI: 10.1021/jp025715y
Google Scholar
[4]
T.K. Ghorai, S.K. Biswas, P. Pramanik, Photooxidation of different organic dyes (RB, MO, TB, and BG) using Fe(III)-doped TiO2 nanophotocatalyst prepared by novel chemical method, Appl. Surf. Sci. 254 (2008) 7498-7504.
DOI: 10.1016/j.apsusc.2008.06.042
Google Scholar
[5]
Y. Cong, J.L. Zhang, F. Chen, M. Anpo, D.N. He, Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III), J. Phys. Chem. C 111 (2007) 10618-10623.
DOI: 10.1021/jp0727493
Google Scholar
[6]
X.W. Cheng, X.J. Yu, Z.P. Xing, Characterization and mechanism analysis of Mo-N-co-doped TiO2 nano-photocatalyst and its enhanced visible activity, J. Colloid. Inter. Sci. 372 (2012) 1-5.
DOI: 10.1016/j.jcis.2011.11.071
Google Scholar
[7]
X.W. Cheng, X.J. Yu, Z.P. Xing, One-step synthesis of visible active C-N-S-tridoped TiO2 photocatalyst from biomolecule cystine, Applied Surface Science, 258 (2012) 7644-7650.
DOI: 10.1016/j.apsusc.2012.04.111
Google Scholar
[8]
S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[9]
Z.H. Zhang, Y. Yuan, G.Y. Shi, Y.J. Fang, L.H. Liang, H.C. Ding, L.T. Jin, Photoelectrocatalytic Activity of Highly Ordered TiO2 Nanotube Arrays Electrode for Azo Dye Degradation, Environ. Sci. Technol. 41 (2007) 6259-6263.
DOI: 10.1021/es070212x
Google Scholar
[10]
K. Shin, S. Seok, S.H. Im, J.H. Park, CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells, Chem. Commun. 46 (2010) 2385-2387.
DOI: 10.1039/b923022j
Google Scholar
[11]
J.G. Yu, G.P. Dai, B. Cheng, Effect of Crystallization Methods on Morphology and Photocatalytic Activity of Anodized TiO2 Nanotube Array Films, J. Phys. Chem. C 114 (2010) 19378-19385.
DOI: 10.1021/jp106324x
Google Scholar
[12]
Y.J. Xin, H.L. Liu, L. Han, Y.B. Zhou, Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology TiO2 Ti photoelectrodes, J. Hazard. Mater. 192 (2011) 1812-1818.
DOI: 10.1016/j.jhazmat.2011.07.005
Google Scholar
[13]
P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: Synthesis and Application, Angew. Chem. Int. Ed. 50 (2011) 2904-2940.
DOI: 10.1002/anie.201001374
Google Scholar
[14]
X.Z. Li, H.L. Liu, P.T. Xue, Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO2 mesh electrode, Environ. Sci. Technol. 34 (2000) 4401-4406.
DOI: 10.1021/es000939k
Google Scholar
[15]
G.K. Mor.; O.K. Varghese, M. Paulose, C.A. Grimes, Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films, Adv. Funct. Mater. 15 (2005) 1297-1296.
DOI: 10.1002/adfm.200500096
Google Scholar
[16]
M.I. Litter, Heterogeneous photocatalysis transition metal ions in photocatalytic systems, Appl. Catal. B. 23 (1999) 89-114.
DOI: 10.1016/s0926-3373(99)00069-7
Google Scholar