Carbothermal Synthesis of Cr3C2-WC-Ni Nanocomposite Powders

Article Preview

Abstract:

Cr3C2-WC-Ni nanocomposite powders with ~50-100 nm were synthesized from precursors by vacuum-aided carbothermal reduction at only 750 °C for 2 h. The phase composition and microstructure of the synthesized products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The present study shows that Cr3C2-WC-Ni nanocomposite powders contain two kinds of solid-solution phases, namely Ni and (Cr, W)3C2 solid solution, respectively. WC and W2C phases do not appear inreaction products due to the dissolution of tungsten atoms into Ni and Cr3C2 unit cells. Especially, there is a change of the crystalline structure for (Cr, W)3C2 phase from 750 °C to 800 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-6

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.M. Stack, M. Antonov and I. Hussainova: J. Phys. D: Appl. Phys. Vol. 39 (2006), p.3165.

Google Scholar

[2] S. Matthews, B. James and M. Hyland. Corros. Sci. Vol. 51 (2009), p.1172.

Google Scholar

[3] I. Hussainova, I. Jasiuk, M. Sardela and M. Antonov: Wear Vol. 267 (2009), p.152.

DOI: 10.1016/j.wear.2008.12.104

Google Scholar

[4] S. Eroglu and C. Duran: Vol. 37 (1997), p.991.

Google Scholar

[5] J. Pirso, M. Viljus, S. Letunovits and K. Juhani: Int. J. Refract. Met. Hard Mater. Vol. 24 (2006), p.263.

Google Scholar

[6] L. Zhang. Mater. Sci. Eng. Powder Metal. Vol. 6 (2001), p.19.

Google Scholar

[7] Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang and H.Y. Sohn: Int. J. Refract. Met. Hard Mater. Vol. 27 (2009), p.288.

Google Scholar

[8] Z. Xiong, G. Shao, X. Shi, X. Duan and L. Yan: Int. J. Refract. Met. Hard Mater. Vol. 26 (2008), p.242.

Google Scholar

[9] J.S. Lee and T.H. Kim: Nanostruct. Mater. Vol. 6 (1995), p.691.

Google Scholar

[10] L. Li and J. Tang: J. Alloys Compd. Vol. 209 (1994), p. L1.

Google Scholar

[11] J. He, M. Ice, E and J. Lavernia: Nanostruct. Mater. Vol. 10 (1998), p.1271.

Google Scholar

[12] S. -K. Ko, C. -W. Won and I. -J. Shon: Scripta Mater. Vol. 37 (1997), p.889.

Google Scholar

[13] S. -C. Wang, H. -T. Lin, P.K. Nayak, S. -Y. Chang and J. -L. Huang: Thin Solid Films Vol. 518 (2010), p.7360.

Google Scholar

[14] P. Luo and P.R. Strutt: Mater. Sci. Eng. A Vol. 204 (1995), p.181.

Google Scholar

[15] T.D. Xiao, S. Torban, P.R. Strutt and B.H. Kear: Nanostruct. Mater. Vol. 7 (1996), p.857.

Google Scholar

[16] L. Chen, W. Lengauer, P. Ettmayer, K. Dreyer, H.W. Daub and D. Kassel: Int. J. Refract. Met. Hard Mater. Vol. 18 (2000), p.307.

Google Scholar

[17] R.J. Matyi, L.H. Schwartz and J.B. Butt: Catal. Rev. Sci. Eng. Vol. 29 (1987), p.41.

Google Scholar