[1]
P. Lodeiro, J. L. Barriada, R. Herrero, M. E. Sastre de Vicente, The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: Kinetic and equilibrium studies, Environmental Pollution, 2006, vol. 142, pp: 264-273.
DOI: 10.1016/j.envpol.2005.10.001
Google Scholar
[2]
D. C. Adriano, Trace Elements in the Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, Springer, New York, Berlin, Heidelberg, Tokyo, (2001).
Google Scholar
[3]
C. N. Mulligan, R. N. Yong, B. F. Gibbs, Remediation technologies for metal-contaminated soils and groundwater: an evaluation, Eng Geol, 2001, vol. 60, pp: 193-207.
DOI: 10.1016/s0013-7952(00)00101-0
Google Scholar
[4]
M. Komárek, P. Tlustoš, J. Száková, V. Chrastný V. Ettler, The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils, Chemosphere, 2007, vol. 67, pp: 640-651.
DOI: 10.1016/j.chemosphere.2006.11.010
Google Scholar
[5]
C. W. do Nascimento, D. Amarasiri, B. Xing, Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil, Environ. Pollut, 2006, vol. 140, pp: 114-123.
DOI: 10.1016/j.envpol.2005.06.017
Google Scholar
[6]
B. Kos, D. Leštan, Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers, Environ. Sci. Technol., 2003, vol. 37, pp: 624-629.
DOI: 10.1021/es0200793
Google Scholar
[7]
Z. G. Shen, X. D. Li, C. C. Wang, H. M. Chen, H. Chua, Lead phytoextraction from contaminated soil with high-biomass plant species, J. Environ. Qual., 2002, vol. 31, pp: 1893-(1900).
DOI: 10.2134/jeq2002.1893
Google Scholar
[8]
L. H. Wu, Y. M. Luo, X. R. Xing, P. Christie, EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk, Agr. Ecosyst. Environ., 2004, vol. 102, pp: 307-318.
DOI: 10.1016/j.agee.2003.09.002
Google Scholar
[9]
S. D. Young, H. Zhang, A. M. Tye, A. Maxted, C. Thums, I. Thornton, Characterizing the availability of metals in contaminated soils, I: The solid phase: Sequential extraction and isotopic dilution, Soil Use and Management, 2005, vol. 21, pp: 450-458.
DOI: 10.1079/sum2005348
Google Scholar
[10]
M. H. Feng, X. Q. Shan, S. Z. Zhang, B. Wen, A comparison of the rhizospherebased method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley, Environmental Pollution, 2005, vol. 137 (2), pp: 231-240.
DOI: 10.1016/j.envpol.2005.02.003
Google Scholar
[11]
M. K. Zhang, Z. Y. Liu, H. Wang, Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice, Communications in Soil Science and Plant Analysis, 2010, vol. 41, pp: 7, 820-831.
DOI: 10.1080/00103621003592341
Google Scholar
[12]
Q. X. Zhou, P. S. Rainbow, B. D. Smith, Comparative study of the tolerance and accumulation of the trace metals zinc, copper and cadmium in three populations of the polychaete Nereis diversicolor, J Marine Biol Assoc UK, 2003, vol. 83, pp: 65-72.
DOI: 10.1017/s0025315403006817h
Google Scholar
[13]
G. L. Guo, Q. X. Zhou, P. V. Koval, G. A. Belogolova, Speciation distribution of Cd, Pb, Cu, and Zn in contaminated Phaeozem in north-east China using single and sequential extraction procedures, Aust J Soil Res, 2006, vol. 44, pp: 135-142.
DOI: 10.1071/sr05093
Google Scholar
[14]
S. Chen, L. N. Sun, L. Chao, Q. X. Zhou, T. H. Sun, Estimation of lead bioavailability in smelter-contaminated soils by single and sequential extraction procedure, Bull Environ Contam Toxicol, 2009, vol. 82, pp: 43-47.
DOI: 10.1007/s00128-008-9566-7
Google Scholar
[15]
N. Finžgar, D. Leštan, Heap leaching of Pb and Zn contaminated soil using ozone/UV treatment of EDTA extractants, Chemosphere, 2006, vol. 63, pp: 1736-1743.
DOI: 10.1016/j.chemosphere.2005.09.015
Google Scholar
[16]
D. M. Heil, A. Samani, T. Hanson, B. Rudd, Remediation of lead contaminated soil by EDTA. I. Batch and column studies, Water Air Soil Pollut, 1998, vol. 113, pp: 77-95.
DOI: 10.1023/a:1005032504487
Google Scholar
[17]
D. Hammer, C. Keller, Changes in the rhizosphere of metal accumulating plants evidenced by chemical extractants, J Environ Qual, 2002, vol. 31, pp: 1561-1569.
DOI: 10.2134/jeq2002.1561
Google Scholar
[18]
A. Bermond, I. Yousfi, J. P. Ghestem, Kinetic approach to the chemical speciation of trace metals in soils, Analyst, 1998, vol. 123, pp: 785-789.
DOI: 10.1039/a707776i
Google Scholar
[19]
W. L. Lindsay, W. A. Norvell, Development of a DTPA soil test for zinc, iron, manganese, and copper, Soil Sci Soc Am J, 1978, vol. 42, pp: 421-428.
DOI: 10.2136/sssaj1978.03615995004200030009x
Google Scholar
[20]
G. A. O'Connor, Use and misuse of the DTPA soil test, J Environ Qual, 1988, vol. 17, pp: 715-718.
Google Scholar