Preparation and Characterization of Paste-Printed CIGSe Absorber Layers Sintered with 10% Tellurium or 5% Antimony Sulfide as a Sintering Aid

Article Preview

Abstract:

The Cu-deficient Cu(In,Ga)Se2 (CIGSe) absorber layer for thin film solar cells was prepared by paste printing its powders followed by sintering at 550  650oC for 1 h with the assistance of sintering aid of 10% Te or 5% Sb2S3 to enhance densification. The variations of crystallinity, microstructure, composition, and electrical properties of resistivity, Hall mobility, and carrier concentration of CIGSe absorber layer with sintering temperature at different sintering aids were investigated. The advantage of this sintering process is the stability in composition and free of the problem of constituent vaporization. The major disadvantage of the CIGSe layer with 5% Sb2S3 as a sintering aid was a 5-time decrease in electrical mobility. Power conversion efficiencies of our devices with sintered CIGSe as an absorber layer were evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

463-468

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, Prog. Photovolt: Res. Appl. Vol. 19 (2011), p.894.

DOI: 10.1002/pip.1078

Google Scholar

[2] R.N. Bhattacharya, J.F. Hiltner, W. Batchelor, M.A. Contreras, R.N. Noufi and J.R. Sites, Thin Solid Films Vol. 361-362 (2000), p.396.

DOI: 10.1016/s0040-6090(99)00809-3

Google Scholar

[3] P.J. Sebastian, M.E. Calixto, R.N. Bhattacharya and R. Nou, Sol. Energy Mater. Sol. Cells Vol. 59 (1999), p.125.

Google Scholar

[4] D.B. Mitzi, M. Yuan, W. Liu, A.J. Kellock, S.J. Chey, L. Gignac, A.G. Schrott, Thin Solid Films Vol. 517 (2009), p.2158.

DOI: 10.1016/j.tsf.2008.10.079

Google Scholar

[5] C.J. Hibberd, E. Chassaing, W. Liu, D.B. Mitzi, D. Lincot and A.N. Tiwari, Prog. Photovolt: Res. Appl. Vol. 18 (2010), p.434.

Google Scholar

[6] Q. Guo, G.M. Ford, H.W. Hillhouse and R. Agrawal, Nano Lett. Vol. 9 (2009), p.3060.

Google Scholar

[7] W. Wang, Y.W. Su and C.H. Chang, Sol. Energy Mater. Sol. Cells Vol. 95 (2011), p.2616.

Google Scholar

[8] T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada and M. Konagai, phys. stat. sol. (a) Vol. 203 (2006), p.2593.

DOI: 10.1002/pssa.200669652

Google Scholar

[9] M. Yuan, D.B. Mitzi, O. Gunawan, A.J. Kellock, S.J. Chey and V.R. Deline, Thin Solid Films Vol. 519 (2010), p.852.

DOI: 10.1016/j.tsf.2010.08.135

Google Scholar

[10] J.W. Park, Y.W. Choi, E.J. Lee, O.S. Joo, S. Yoon and B.K. Min, J. Crystal Growth Vol. 311 (2009), p.2621.

Google Scholar

[11] S.J. Ahn, C. W. Kim, J.H. Yun, J. Gwak, S. Jeong, B.H. Ryu and K.H. Yoon, J. Phys. Chem. C Vol. 114 (2010), p.8108.

Google Scholar

[12] M.G. Panthani, V. Akhavan, B. Goodfellow, J.P. Schmidtke, L. Dunn, A. Dodabalapur, P.F. Barbara and B.A. Korgel, J. Am. Chem. Soc. Vol. 130 (2008), p.16770.

DOI: 10.1021/ja805845q

Google Scholar

[13] T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada and M. Konagai, phys. stat. sol. (a) Vol. 203 (2006), p.2593.

DOI: 10.1002/pssa.200669652

Google Scholar

[14] D.H. Kuo and C.W. Jhang, Int. J. Appl. Ceram. Technol. in press.

Google Scholar

[15] N. Romeo, A. Bosio, S. Mazzamuto, D. Denossi and A. Romeo, Proceeding of Photovoltaic Specialists Conference, 35th IEEE (2010), p.786.

Google Scholar