Technical Development of Hybrid Rapid Tooling Technology

Article Preview

Abstract:

The surface finish of fused deposition modeling (FDM) processed part is excessively rough due to stair stepping effect. In addition, the tensile strength of rapid tooling fabricated by FDM is inferior to that fabricated by plastic injection molding. A hybrid rapid tooling technology is developed to improve the surface roughness and increase the tensile strength of rapid tooling fabricated by FDM using epoxy-based composite in this work. Improvement rate of tensile strength of rapid tooling is 2.34 times of the add rate of epoxy-based composite. Surface roughness improvement rate of up to 92.94% can be achieved. Hybrid rapid tooling technology owns low manufacturing cost, simple manufacturing process and good flexibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

830-834

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] St. H. Irsen Dr., B. Leukers, Chr. Hockling, C. Tille, H. Seitz , Bioceramic Granulates for use in 3D Printing: Process Engineering Aspects, Materialwissenschaft und Werkstofftechnik, Volume 37, Issue 6, 2006, Pages: 533–537.

DOI: 10.1002/mawe.200600033

Google Scholar

[2] C. C. Kuo, Y. C. Tsou, B. C. Chen, Enhancing the efficiency of removing support material from rapid prototype part, Materialwissenschaft und Werkstofftechnik, Volume 43, Issue 3, 2012, Pages 234-240.

DOI: 10.1002/mawe.201200841

Google Scholar

[3] H. Meier, Ch. Haberland, Experimental studies on selective laser melting of metallic parts, Materialwissenschaft und Werkstofftechnik, Volume 39, Issue 9, 2008, Pages: 665–670.

DOI: 10.1002/mawe.200800327

Google Scholar

[4] D. T Pham, R. S Gault, A comparison of rapid prototyping technologies , International Journal of Machine Tools and Manufacture, Volume 38, Issues 10-11, 1998, Pages 1257-1287.

DOI: 10.1016/s0890-6955(97)00137-5

Google Scholar

[5] L.M. Galantucci, F. Lavecchia, G. Percoco, Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling , CIRP Annals - Manufacturing Technology, Volume 59, Issue 1, 2010, Pages 247-250.

DOI: 10.1016/j.cirp.2010.03.074

Google Scholar

[6] D. Ahn, J. H. Kweon, J. Choi, S. Lee, Quantification of surface roughness of parts processed by laminated object manufacturing , Journal of Material Processing Technology, Volume 212, Issue 2, 2012, Pages 339-346.

DOI: 10.1016/j.jmatprotec.2011.08.013

Google Scholar

[7] R.E. Williams and V.L. Melton, Abrasive flow finishing of stereo-lithography prototypes, Rapid Prototyping Journal, Volume 4, Issue 2, 1998, Pages 56–67.

DOI: 10.1108/13552549810207279

Google Scholar

[8] P. Kulkarni and D. Dutta, On the Integration of Layered Manufacturing and Material Removal Process, International Journal of Machine Science and Engineering, Volume 122, 2000, Pages100-108.

Google Scholar

[9] C. C. Kuo, Z. Y. Lin, Development of bridge tooling for fabricating mold inserts of aspheric optical lens , Materialwissenschaft und Werkstofftechnik, Volume 42, No. 11, 2011, Pages 1019-1024.

DOI: 10.1002/mawe.201100819

Google Scholar

[10] D. Ahn, J. H. Kweon, S. Kwon, J. Song, S. Lee, Representation of surface roughness in fused deposition modeling  , Journal of Materials Processing Technology, Volume 209, Issues 15-16, 2009, Pages 5593-5600.

DOI: 10.1016/j.jmatprotec.2009.05.016

Google Scholar

[11] P. M. Pandey, N. V. Reddy, S. G. Dhande, Improvement of surface finish by staircase machining in fused deposition modeling  , Journal of Material Processing Technology, Volume 132, Issues 1-3, 2003, Pages 323-331.

DOI: 10.1016/s0924-0136(02)00953-6

Google Scholar

[12] L.M. Galantucci, F. Lavecchia, G. Percoco, Experimental study aiming to enhance the surface finish of fused deposition modeled parts , CIRP Annals - Manufacturing Technology, Volume 58, Issue 1, 2009, Pages 189-192.

DOI: 10.1016/j.cirp.2009.03.071

Google Scholar

[13] B. K. Paul and V. Voorakarnam, Effect of layer thickness and orientation angle on surface roughness in laminated object manufacturing, Journal of Manufacturing Processes, Volume 3, No. 2, 2001, Pages 94-101.

DOI: 10.1016/s1526-6125(01)70124-7

Google Scholar