Synthesis, Structural, Optical, and Magnetic Properties of Fe Doped TiO2 along with Different Concentration

Article Preview

Abstract:

Nanocrystalline Fe-doped TiO2 was prepared by Sol-Gel technique, which was followed by freeze at-30°C temperature for 12hrs. The obtained Gel was thermally treated at 200,400,600 and 800°C. X-ray Powder Diffraction (XRD), Scanning Electron microscopy (SEM), UV-Vis Spectroscopy, Photo luminescence (PL) and EDAX was used to study its Structural and Optical properties. All Fe-doped TiO2 nanostructures show an appearance of Red shift relative to the bulk TiO2. The XRD pattern show the coexistence of major anatase phase and minor brookite phase for samples treated up to 600°C. Whereas at 800°C rutile is the only phase observed. All Fe doped TiO2 nanostructures show an appearance of Red shift relative to bulk undoped TiO2. The magnetic property by Gouy Balance of Fe doped TiO2 exhibit Peramagnetism at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-126

Citation:

Online since:

February 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Chen, DD. Dionysiou, Correlation of structural properties and film thickness to photocatalytic activity of thick TiO2 films coated on stainless steel, Appl Catal B Environ 69 (2006) 24.

DOI: 10.1016/j.apcatb.2006.05.002

Google Scholar

[2] Y. Matsumoto, M. Murakami, T. Shono, T. Hasagewa, et al., Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide, Science 291 (2001) 854–856.

DOI: 10.1126/science.1056186

Google Scholar

[3] T. Lopez, J. Hernandez, R. Gomez, X. Bokhimi, Synthesis and Characterization of TiO2−MgO Mixed Oxides Prepared by the Sol−Gel Method, Langmuir 15 (1999) 5689.

DOI: 10.1021/la9812931

Google Scholar

[4] W. Wang, J. Dai, J. Tang, et al., J. Superconduct. 16 (2003) 155.

Google Scholar

[5] C.E. Rodriguez Torres, A.F. Cabrera, M.B. Fernandez van Raap, et al., Physica B 354 (2004) 67.

Google Scholar

[6] P. Kumar, K. Nair, Porous nanocomposites as catalyst supports: Part I. second phase stabilization, thermal stability and anatase-to-rutile transformation in titania-alumina nanocomposites, Appl. Catal. A 119 (1994) 163.

Google Scholar

[7] X.Z. Ding, X.H. Lui, Y. Z. He, Study of the room temperature aging effect on structural evolution of gel-derived nanocrystalline titania powders, J. mater. Sci. Lett. 15 (1996) 1789.

DOI: 10.1007/bf00591650

Google Scholar

[8] H. Kominami, Y. Takada, Synthesis of thermally stable nanocrystalline anatase by high-temperature hydrolysis of titanium alkoxide with water dissolved in organic solvent from gas phase, J. mater. Sci. Lett. 15 (1996) 197.

DOI: 10.1007/bf00274449

Google Scholar

[9] C. Xiao-qing, Y. Juan-yu, Preparation and photo catalytic properties of Fe-doped TiO2 nanoparticles, J. Cent. South Univ. Technol. 02 1005 (2004) 9784.

Google Scholar

[10] D. Singh, N. Singh, Band gap modification of TiO2 sol-gel films by Fe and Ni doping, J Sol-Gel Sci Technol 10 (2010) 2387.

DOI: 10.1007/s10971-010-2387-2

Google Scholar

[11] L. Liu, J. Chan, J. Phys. Calcination induced Phase transformation and Accompanying Luminescence of TiO2 Nanotubes, Chem. C 114 (2010) 21353-21359.

DOI: 10.1021/jp1093355

Google Scholar

[12] J.H. Cho1, B.Y. Kim1, Enhanced ferromagnetism in Co-doped TiO2 Powders, Physica Status Solidi (b) 241 (2004) 1537–1540.

Google Scholar

[13] Z. Szafran, R. M. Pike, and M. M. Singh, Microscale Inorganic Chemistry, John Wiley & Sons, N.Y. 49 (1991) 5.

Google Scholar

[14] D. F. Evans, A new type of Magnetic balance, J. Phys. E; Sci. Instr. 7 (1974) 247.

Google Scholar

[15] X. H. Wang, J.G. Li, Pyrogenic iron doped TiO2 nanopowder synthesized in RF Thermal Plasma: Phase formation, Defect Structure, Band gap And Magnetic properties, J.A.C.S. Articles 192 (2005) 0397.

DOI: 10.1021/ja051240n.s001

Google Scholar