Catalytic Performance of SO42-/TiO2 for the Conversion of High Fructose Corn Syrup

Article Preview

Abstract:

SO42-/TiO2 catalysts prepared by precipitation and impregnation method were used for the dehydration of carbohydrates into 5-hydroxymethylfurfural in aqueous solution. Effects of various parameters and catalyst reuse towards catalytic performance of SO42-/TiO2 were studied in detail. Experimental results showed that calcine temperature and acid concentration had significant influence on the essential catalyst properties. SO42-/TiO2, treated with 0.50 mol/L H2SO4 and calcined at 773 K for 3 h, showed the best catalytic effect. The recovered catalyst after calcination was found to show slower deactivation rate compared to those without calcination.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-142

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.B. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316 (2007) 1597-1600.

DOI: 10.1126/science.1141199

Google Scholar

[2] A. Takagaki, C. Tagusagawa, K. Domen, Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst, Chem. Commun. (2008) 5363-5365.

DOI: 10.1039/b810346a

Google Scholar

[3] M. Balat, H. Balat, Progress in biodiesel processing, Appl. Energy 87 (2010) 1815-1835.

DOI: 10.1016/j.apenergy.2010.01.012

Google Scholar

[4] G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates, Science 308 (2005) 1446.

DOI: 10.1126/science.1111166

Google Scholar

[5] M.J. Antal, W.S.L. Mok, G.N. Richards, Mechanism of formation 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose, Carbohydr. Res. 199 (1990) 91-109.

DOI: 10.1016/0008-6215(90)84096-d

Google Scholar

[6] T. Tuercke, S. Panic, S. Loebbecke, Microreactor process for the optimized synthesis of 5-hydroxymethylfurfural: a promising building block obtained by catalytic dehydration of fructose, Chem. Eng. Technol. 32 (2009) 1815-1822.

DOI: 10.1002/ceat.200900427

Google Scholar

[7] C. Moreau, R. Durand, C. Pourcheron, S. Razigade, Preparation of 5-hydroxymethylfurfural from fructose and precursors over H-form zeolites, Ind. Crops Prod. 3 (1994) 1885-1890.

DOI: 10.1016/0926-6690(94)90080-9

Google Scholar

[8] C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros, G. Avignon, Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites, Appl. Catal. A: Gen. 145 (1996) 211-224.

DOI: 10.1016/0926-860x(96)00136-6

Google Scholar

[9] A. Takagaki, M. Ohara, S. Nishimura, K. Ebitani, A one-pot reaction for biofinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides, Chem. Commun. (2009) 6276-6278.

DOI: 10.1039/b914087e

Google Scholar

[10] M. Watanabe, Y. Aizawa, T. Iida, R. Nishimura, H. Inomata, Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: relationship between reactivity and acid-base property determined by TPD measurement, Appl. Catal. A: Gen. 295 (2005).

DOI: 10.1016/j.apcata.2005.08.007

Google Scholar

[11] X.H. Qi, M. Watanabe, T.M. Aida, Jr R.L. Smith, Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating, Catal. Commun. 9 (2008) 2244-2249.

DOI: 10.1039/b801641k

Google Scholar

[12] H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials. 2nd ed., Wiley, New York, (1974).

Google Scholar

[13] G.X. Yu, X.L. Zhou, C.L. Li, L.F. Chen, J.A. Wang, Effect of isopropanol aging of Zr(OH)4 on n-hexane isomerization over Pt-SO42-/Al2O3-ZrO2, Catal. Today 148 (2009) 169-173.

DOI: 10.1016/j.cattod.2009.02.045

Google Scholar

[14] H.P. Yan, Y. Yang, D.M. Tong, X. Xiang, C.W. Hu, Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42-/ZrO2 and SO42-/ZrO2-Al2O3 solid acid catalysts, Catal. Commun. 10 (2009) 1558-1563.

DOI: 10.1016/j.catcom.2009.04.020

Google Scholar

[15] B. Tyagi, M.K. Mishra, R.V. Jasra, Solvent free synthesis of acetyl salicylic acid over nano-crystalline sulfated zirconia solid acid catalyst, J. Mol. Catal. A: Chem. 317 (2010) 41-45.

DOI: 10.1016/j.molcata.2009.10.019

Google Scholar

[16] H. Sun, Y.Q. Ding, J.Z. Duan, Q.J. Zhang, Z.Y. Wang, H. Lou, X.M. Zheng, Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst, Bioresour. Technol. 101 (2010) 953-958.

DOI: 10.1016/j.biortech.2009.08.089

Google Scholar

[17] H.E. Van Dam, A.P.G. Kieboom, H. Van Bekkum, The convertion of fructose and glucose in acidic media: formation of hydroxymethylfurfural, Starch/Starke 38 (1986) 95-101.

DOI: 10.1002/star.19860380308

Google Scholar

[18] M.J. Antal, T. Leesomboon, W.S. Mok, G.N. Richards, Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature. 3. mechanism of formation of 2-furaldehyde from D-xylose, Carbohydr. Res. 217 (1991) 71-85.

DOI: 10.1016/0008-6215(91)84118-x

Google Scholar

[19] M. Kuster, Manufacture of 5-hydroxymethylfurfural, Starch/Starke 42 (1990) 314-321.

Google Scholar