[1]
H.B. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316 (2007) 1597-1600.
DOI: 10.1126/science.1141199
Google Scholar
[2]
A. Takagaki, C. Tagusagawa, K. Domen, Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst, Chem. Commun. (2008) 5363-5365.
DOI: 10.1039/b810346a
Google Scholar
[3]
M. Balat, H. Balat, Progress in biodiesel processing, Appl. Energy 87 (2010) 1815-1835.
DOI: 10.1016/j.apenergy.2010.01.012
Google Scholar
[4]
G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates, Science 308 (2005) 1446.
DOI: 10.1126/science.1111166
Google Scholar
[5]
M.J. Antal, W.S.L. Mok, G.N. Richards, Mechanism of formation 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose, Carbohydr. Res. 199 (1990) 91-109.
DOI: 10.1016/0008-6215(90)84096-d
Google Scholar
[6]
T. Tuercke, S. Panic, S. Loebbecke, Microreactor process for the optimized synthesis of 5-hydroxymethylfurfural: a promising building block obtained by catalytic dehydration of fructose, Chem. Eng. Technol. 32 (2009) 1815-1822.
DOI: 10.1002/ceat.200900427
Google Scholar
[7]
C. Moreau, R. Durand, C. Pourcheron, S. Razigade, Preparation of 5-hydroxymethylfurfural from fructose and precursors over H-form zeolites, Ind. Crops Prod. 3 (1994) 1885-1890.
DOI: 10.1016/0926-6690(94)90080-9
Google Scholar
[8]
C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros, G. Avignon, Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites, Appl. Catal. A: Gen. 145 (1996) 211-224.
DOI: 10.1016/0926-860x(96)00136-6
Google Scholar
[9]
A. Takagaki, M. Ohara, S. Nishimura, K. Ebitani, A one-pot reaction for biofinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides, Chem. Commun. (2009) 6276-6278.
DOI: 10.1039/b914087e
Google Scholar
[10]
M. Watanabe, Y. Aizawa, T. Iida, R. Nishimura, H. Inomata, Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: relationship between reactivity and acid-base property determined by TPD measurement, Appl. Catal. A: Gen. 295 (2005).
DOI: 10.1016/j.apcata.2005.08.007
Google Scholar
[11]
X.H. Qi, M. Watanabe, T.M. Aida, Jr R.L. Smith, Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating, Catal. Commun. 9 (2008) 2244-2249.
DOI: 10.1039/b801641k
Google Scholar
[12]
H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials. 2nd ed., Wiley, New York, (1974).
Google Scholar
[13]
G.X. Yu, X.L. Zhou, C.L. Li, L.F. Chen, J.A. Wang, Effect of isopropanol aging of Zr(OH)4 on n-hexane isomerization over Pt-SO42-/Al2O3-ZrO2, Catal. Today 148 (2009) 169-173.
DOI: 10.1016/j.cattod.2009.02.045
Google Scholar
[14]
H.P. Yan, Y. Yang, D.M. Tong, X. Xiang, C.W. Hu, Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42-/ZrO2 and SO42-/ZrO2-Al2O3 solid acid catalysts, Catal. Commun. 10 (2009) 1558-1563.
DOI: 10.1016/j.catcom.2009.04.020
Google Scholar
[15]
B. Tyagi, M.K. Mishra, R.V. Jasra, Solvent free synthesis of acetyl salicylic acid over nano-crystalline sulfated zirconia solid acid catalyst, J. Mol. Catal. A: Chem. 317 (2010) 41-45.
DOI: 10.1016/j.molcata.2009.10.019
Google Scholar
[16]
H. Sun, Y.Q. Ding, J.Z. Duan, Q.J. Zhang, Z.Y. Wang, H. Lou, X.M. Zheng, Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst, Bioresour. Technol. 101 (2010) 953-958.
DOI: 10.1016/j.biortech.2009.08.089
Google Scholar
[17]
H.E. Van Dam, A.P.G. Kieboom, H. Van Bekkum, The convertion of fructose and glucose in acidic media: formation of hydroxymethylfurfural, Starch/Starke 38 (1986) 95-101.
DOI: 10.1002/star.19860380308
Google Scholar
[18]
M.J. Antal, T. Leesomboon, W.S. Mok, G.N. Richards, Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature. 3. mechanism of formation of 2-furaldehyde from D-xylose, Carbohydr. Res. 217 (1991) 71-85.
DOI: 10.1016/0008-6215(91)84118-x
Google Scholar
[19]
M. Kuster, Manufacture of 5-hydroxymethylfurfural, Starch/Starke 42 (1990) 314-321.
Google Scholar