Preparation and Modification of Carbon Blacks from Wastes

Article Preview

Abstract:

It is one of the focuses of the world today to save resources and avoid pollutions by waste recycling and reusing. Pyrolysis of rubbers, plastics and plants is an economical and reliable method of recycling to produce carbon blacks and other products. But the carbon blacks are useless before modification. This paper summarizes the preparation and modification of carbon blacks from wastes. The modification methods of carbon black include removing impurities and improving the surface activities. A lot of application examples were given here.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-121

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Xue, Jie Gao, Y.B. Bao, J.B. Wang, Q.Y. Li, C.F. Wu, An analysis of microstructural variations in carbon black modified by oxidation or ultrasound, Carbon 49(2011) 3346 -3355.

DOI: 10.1016/j.carbon.2011.04.040

Google Scholar

[2] J. Razumiene, J. Barkauskas, V. Kubilius, R. Meˇskys, V. Laurinaviˇcius, Modified graphitized carbon black as transducing material for reagentless H2O2 and enzyme sensors, Talanta 67(2005) 783-790.

DOI: 10.1016/j.talanta.2005.04.004

Google Scholar

[3] H.P. Xu, Z.M. Dang, M.J. Jiang, S.H. Yao, J.B. Bai, Enhanced dielectric properties and positive temperature coefficient effect in the binary polymer composites with surface modified carbon black, J. Mater. Chem. 18(2008) 229-234.

DOI: 10.1039/b713857a

Google Scholar

[4] Q.L. Zhou, Y. Zhang, Q.Y. Li, C.F. Wu, Effect of Modified Carbon Black on the UV/IR Screening Ability of Poly(ethylene terephthalate) Transparent Films, Polym. Compos. (2011) 297-304.

DOI: 10.1002/pc.21050

Google Scholar

[5] J.F. Huang, F. Shen, X.H. Li, X.Q. Zhou, B.Y. Li, R.L. Xu, C.F. Wu, Chemical modification of carbon black by a simple non-liquid-phase approach, J. Colloid Interface Sci. 328(2008) 92-97.

DOI: 10.1016/j.jcis.2008.08.044

Google Scholar

[6] Meszaros. L, Barany. T, Czvikovszky. T, EB-promoted recycling of waste tire rubber with polyolefins, Radiat. Phys. Chem. 81(2012) 1357-1360.

DOI: 10.1016/j.radphyschem.2011.11.058

Google Scholar

[7] Dekic. PS, Temeljkovski. DI, Rancic. B, Nusev. S., Application of recycled rubber powder (RRP) in NR/SBR compounds, J. Sci. Ind. Res. 71(2012) 295-298.

Google Scholar

[8] B. C. Peebles, P. K. Dutta, W. J. Waldman, F. A. Villamena, K. Nash, M. Severance, A. Nagy, Physicochemical and Toxicological Properties of Commercial Carbon Blacks Modified by Reaction with Ozone, Environ. Sci. Technol. 45(2011) 10668-10675.

DOI: 10.1021/es202984t

Google Scholar

[9] Ani. FN, Nor. NSM., Microwave Induced Fast Pyrolysis of Scrap Rubber Tires, AMER INST PHYSICS, Melaka, 2012, pp.834-841.

DOI: 10.1063/1.4704294

Google Scholar

[10] S. Chakraborty, P. Roy, A. Pathak, M. Debnath, S. Dasgupta, R. Mukhopadhyay, Composition Analysis of Carbon Black-Filled Polychloroprene Rubber Compound by Thermo-Oxidative Degradation of the Compound, J. Elastomers Plast. 43(2011) 499-508.

DOI: 10.1177/0095244311413442

Google Scholar

[11] H. Juang, L. Tang, C. Z. Wu, Characterization of Gaseous and Solid Product from Thermal Plasma Pyrolysis of Waste Rubber, Environ. Sci. Technol. 37(2003) 4463-4467.

DOI: 10.1021/es034193c

Google Scholar

[12] C. Roy, H. Darmstadt, B. Benallal, C. Amen-Chen, Characterization of naphtha and carbon black obtained by vacuum pyrolysis of polyisoprene rubber, Fuel Process. Technol. 50(1997) 87-103.

DOI: 10.1016/s0378-3820(96)01044-2

Google Scholar

[13] W. Kaminsky, C. Mennerich, Z. Zhang, Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed, J. Anal. Appl. Pyrolysis 85(2009) 334-337.

DOI: 10.1016/j.jaap.2008.11.012

Google Scholar

[14] W. Kaminsky, C. Mennerich, Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1, 3-butadiene, styrene and carbon black, J. Anal. Appl. Pyrolysis 58-59(2001) 803-811.

DOI: 10.1016/s0165-2370(00)00129-7

Google Scholar

[15] Hamby K W, Kelly J B, Kuhn T J., U.S. Patent US2011174193-A1 (2011).

Google Scholar

[16] X.F. Guo, G.J. Kim, Ultrafine carbon black produced by pyrolysis of polyethylene using a novel DC-thermal plasma process, J. Phys. Chem. Solids 69(2008) 1224-1227.

DOI: 10.1016/j.jpcs.2007.10.139

Google Scholar

[17] Zhang Z, Zhang J., China Patent CN1786116-A, (2006); CN100441664-C, (2008).

Google Scholar

[18] X.Q. Zhao, M. Wang, H.Z. Liu, L.Z. Li, C.Y. Ma, Z.L. Song, A microwave reactor for characterization of pyrolyzed biomass, Bioresour. Technol. 104(2012) 673-678.

DOI: 10.1016/j.biortech.2011.09.137

Google Scholar

[19] K. A. Spokas, K. B. Cantrell, J. M. Novak, et al., Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration, J. Environ. Qual. 41(2011) 973-989.

DOI: 10.2134/jeq2011.0069

Google Scholar

[20] Fisher. EM, Dupont. C, Darvell. LI, Commandre. JM, Saddawi. A , Jones. JM, Grateau. M , Nocquet. T, Salvador. S., Combustion and gasification characteristics of chars from raw and torrefied biomass, Bioresour. Technol. 119(2012) 157-165.

DOI: 10.1016/j.biortech.2012.05.109

Google Scholar

[21] T. Mani, P. Murugan, N. Mahinpey, Pyrolysis of Oat Straw and the Comparison of the Product Yield to Wheat and Flax Straw Pyrolysis, Energy Fuels 25(2011) 2803-2807.

DOI: 10.1021/ef200546v

Google Scholar

[22] X.Q. Zhao, J. Zhang, Z.L. Song, H.Z. Liu, L.Z. Li, C.Y. Ma, Microwave pyrolysis of straw bale and energy balance analysis, J. Anal. Appl. Pyrolysis 92(2011) 43-49.

DOI: 10.1016/j.jaap.2011.04.004

Google Scholar

[23] S. Kloss, F. Zehetner, A. Dellantonio, et al., Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties, J. Environ. Qual. 41(2011) 990-1000.

DOI: 10.2134/jeq2011.0070

Google Scholar

[24] A. Pattiya, Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor, Bioresour. Technol. 102(2011) 1959-(1967).

DOI: 10.1016/j.biortech.2010.08.117

Google Scholar

[25] K. Hammes, R. J. Smernik, J. O. Skjemstad, A. Herzog, U. F. Vogt, M. W.I. Schmidt, Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification, Org. Geochem. 37(2006).

DOI: 10.1016/j.orggeochem.2006.07.003

Google Scholar

[26] J. Kaal, M. P.W. Schneider, M. W.I. Schmidt, Rapid molecular screening of black carbon (biochar) thermosequences obtained from chestnut wood and rice straw: A pyrolysis-GC/MS study, Biomass Bioenergy 45(2012) 115-129.

DOI: 10.1016/j.biombioe.2012.05.021

Google Scholar

[27] Koufopanos C, PapayannakosN, MaschioG, et al., Modelling of the porolysis biomass particles: Studies on kinetics, thermal and heat transfer effects, Canadian J. Chem. Eng. (1991): 907-915.

DOI: 10.1002/cjce.5450690413

Google Scholar

[28] Encinar J M, Beltran F J, Bernalte A, et al., Pyrolysis of two agricultural residues: Olive and grape bagasse—Influence of particle size and temperature, Biomass Bioenergy (1996) 397-409.

DOI: 10.1016/s0961-9534(96)00029-3

Google Scholar

[29] Demirbas A., An overview of biomass pyrolysis, Energy Sources, (2002) 471-482.

Google Scholar

[30] J.F. Huang, F. Shen, X.H. Li, X.Q. Zhou, B.Y. Li, R.L. Xu, C.F. Wu, Chemical modification of carbon black by a simple non-liquid-phase approach, J. Colloid Interface Sci. 328(2008) 92-97.

DOI: 10.1016/j.jcis.2008.08.044

Google Scholar

[31] D. Borah, S. Satokawa, S. Kato, T. Kojima, Characterization of chemically modified carbon black for sorption application, Appl. Surf. Sci. 254(2008) 3049-3056.

DOI: 10.1016/j.apsusc.2007.10.053

Google Scholar

[32] J. Zhou, T.M. Yu, S.J. Wu, Z.M. Xie, Y.R. Yang, Inverse Gas Chromatography Investigation of Rubber Reinforcement by Modified Pyrolytic Carbon Black from Scrap Tires, Ind. Eng. Chem. Res. 49(2010) 1691-1696.

DOI: 10.1021/ie9009217

Google Scholar

[33] Lee JH, Wee SB, Kwon MS, Kim HH, Choi JM, Song MS, Park HB, Kim H, Paik U., Strategic dispersion of carbon black and its application to ink-jet-printed lithium cobalt oxide electrodes for lithium ion batteries, J. Power Sources 196(2011).

DOI: 10.1016/j.jpowsour.2011.03.041

Google Scholar

[34] D. Borah, S. Satokawa, S. Kato, T. Kojima, Sorption of As(V) from aqueous solution using acid modified carbon black, J. Hazard. Mater. 162(2009) 1269-1277.

DOI: 10.1016/j.jhazmat.2008.06.015

Google Scholar

[35] X. Chen, M. Farber, Y.M. Gao., et al., Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces, Carbon, 41(2003) 1489-1500.

DOI: 10.1016/s0008-6223(03)00053-8

Google Scholar

[36] Xu HY, Cao YY, He XL, Wu YF, Zhang YM, Wu CF., Influence of In-situ Grafting on the Dispersion of Carbon Black in Solvents and Natural Rubber, J. Macromol. Sci., Part B Phys. 48(2009) 1190-1200.

DOI: 10.1080/00222340903275768

Google Scholar

[37] He XL, Cai YQ, Wang QT, Qi X, Guo R, Tang Y, Liu BP., Improvement of Mechanical Properties and Ultraviolet Resistance of Polyethylene Pipe Materials Using High Density Polyethylene Matrix Grafted Carbon Black, J. Macromol. Sci., Part B Phys. 51(2012).

DOI: 10.1080/00222348.2011.596784

Google Scholar

[38] A. K. Ghosh, S. Maiti, B. Adhikari, G. S. Ray, S. K. Mustafi., Effect of Modified Carbon Black on the Properties of Natural Rubber Vulcanizate, J. Appl. Polym. Sci. 66(1997) 683-693.

DOI: 10.1002/(sici)1097-4628(19971024)66:4<683::aid-app8>3.0.co;2-o

Google Scholar

[39] S. S. Jeon, W. B. Han, H. H. An, S.S. Im, C. S. Yoon, Polypyrrole-modified graphitized carbon black as a catalyst support for methanol oxidation, Appl. Catal., A: General, 409-410(2011) 156-161.

DOI: 10.1016/j.apcata.2011.09.044

Google Scholar

[40] Lovell, P.A., Casado, R.M., Navabpour, P., Stanford, J.L., Polymer encapsulation of surface-modified carbon blacks using surfactant-free emulsion polymerization, Polymer 48(2007) 2554-63.

DOI: 10.1016/j.polymer.2007.02.063

Google Scholar

[41] H. Ridaoui, A. Jada, L. Vidal, J.B. Donnet, Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size, Colloids Surf., A: Physicochem. Eng. Aspects 278(2006) 149-159.

DOI: 10.1016/j.colsurfa.2005.12.013

Google Scholar

[42] MOMOSE M., Japan, Patent JP2006219584-A. (2006).

Google Scholar

[43] Z.H. Jiang, J. Jin, C.F. Xiao, X. Li, Effect of surface modification of carbon black (CB) on the morphology and crystallization of poly(ethylene terephthalate)/CB masterbatch, Colloids Surf., A: Physicochem. Eng. Aspects 39(2012) 105-115.

DOI: 10.1016/j.colsurfa.2011.12.013

Google Scholar

[44] Q.Y. Li, N. Yu, Z.X. Qiu, X.J. Zhou, C. F. Wu, Preparation of modified carbon black with nano-scale size and enhanced stability in organic solvent by solid state method, Colloids Surf., A: Physicochem. Eng. Aspects 317(2008) 87-92.

DOI: 10.1016/j.colsurfa.2007.09.038

Google Scholar

[45] Toupin M, Belanger D., Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations, Langmuir, 24(2008) 1910-(1917).

DOI: 10.1021/la702556n

Google Scholar