[1]
J. Corella, A. Orio, P. Aznar, Biomass gasification with air in fluidized bed: Reforming of the gas composition with commercial steam reforming catalysts, Ind Eng Chem Res, 37 (1998) (12) : 4617- 4624.
DOI: 10.1021/ie980254h
Google Scholar
[2]
P. Nader, W. Wang, Z. Ye, et al. Tar formation in pressurized fluidized bed air gasification of woody biomass, Energy & Fuels, , 14 (2000) (3): 603-611.
DOI: 10.1021/ef990185z
Google Scholar
[3]
A. S. Pekka, Jukka K L, Bredenberg J B. Catalytic purification of tarry fuel gas with carbonate Rocks and Ferrous Materials, Fuel, , 71 (1992) 211-218.
DOI: 10.1016/0016-2361(92)90011-c
Google Scholar
[4]
A. C. Miguel, Corella J, Aznar M P, et al. Biomass gasification with air in fluidized bed. hot gas cleanup with selected commercial and full-size nickel-based catalysts. Ind Eng Chem Res, 39 (2000), 1143-1154.
DOI: 10.1021/ie990738t
Google Scholar
[5]
P.A. Simell, J.O. Hepola, A.O.I. Krause, Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts, Fuel, 76 (1997) 1117.
DOI: 10.1016/s0016-2361(97)00109-9
Google Scholar
[6]
P.A. Simell, E.K. Hirvensalo, V.T. Smolander, Steam reforming of gasification gas tar over dolomite with benzene as a model compound, Ind. Eng. Chem. Res. 38 (1999) 1250.
DOI: 10.1021/ie980646o
Google Scholar
[7]
R. Coll, J. Salvado, X. Farriol, D. Montane, Steam reforming model compounds of biomass gasification tars: Conversion at different operating conditions and tendency towards coke formation, Fuel Process Technology, 74 (2001) 19.
DOI: 10.1016/s0378-3820(01)00214-4
Google Scholar
[8]
D. Swierczynski, Claire Courson, Alain Kiennemann, Study of steam reforming of toluene used as model compound of tar produced by biomass gasification, Chemical Engineering and Processing 47 (2008) 508–513.
DOI: 10.1016/j.cep.2007.01.012
Google Scholar
[9]
C. Li, Daisuke Hirabayashi, Kenzi Suzuki, Development of new nickel based catalyst for biomass tar steam reforming producing H2-rich syngas, Fuel Processing Technology 90 (2009) 790–796.
DOI: 10.1016/j.fuproc.2009.02.007
Google Scholar
[10]
Takeshi Furusawa, Yasutomo Miura, Yoshihiko Kori, et al, The cycle usage test of Ni/MgO catalyst for the steam reforming of Naphthalene/Benzene as model tar compounds of biomass gasification, Catalysis Communications 10 (2009) 552–556.
DOI: 10.1016/j.catcom.2008.10.032
Google Scholar
[11]
Takeshi Furusawaa, Atsushi Tsutsumi, Comparison of Co/MgO and Ni/MgO catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification, Applied Catalysis A: General 278 (2005) 207–212.
DOI: 10.1016/j.apcata.2004.09.035
Google Scholar
[12]
D. Swierczynski, C. Courson, A. Kiennemann, Study of steam reforming of toluene used as model compound of tar produced by biomass gasication, Chem. Eng. Process. 47 (2008) 508-513.
DOI: 10.1016/j.cep.2007.01.012
Google Scholar
[13]
D. Sutton, B. Kelleher, R.H. Ross, Review of literature on catalysts for biomass gasification, Fuel Process Technology. 73 (2001) 155–173.
DOI: 10.1016/s0378-3820(01)00208-9
Google Scholar
[14]
K.A. Magrini-Bair, S. Czernik, R. French, Y.O. Parent, et al, Fluidizable reforming catalyst development for conditioning biomass derived syngas, Appl. Catal., A. 318 (2007) 199–206.
DOI: 10.1016/j.apcata.2006.11.005
Google Scholar
[15]
L. Devi, K. J. Ptasinski, F. J. J. G. Janssen, A review of the primary measures for tar elimination in biomass gasification processes, Biomass and Bioenergy, 24 (2003) 125-140.
DOI: 10.1016/s0961-9534(02)00102-2
Google Scholar
[16]
A. Donnot, P. Magne, X. Deglise, Experimental approach to the catalysed cracking reaction of tar from wood pyrolysis, J. Anal. Appl. Pyrol. 21 (1991) 265.
DOI: 10.1016/0165-2370(91)80002-p
Google Scholar
[17]
J. Delgado, M.P. Aznar, J. Corella, Calcined dolomite, magnesite, and calcite for cleaning hot Gas from a fluidized bed biomass gasifier with steam: life and usefulness, Ind. Eng. Chem. Res. 35 (1996) 3637.
DOI: 10.1021/ie950714w
Google Scholar
[18]
M.P. Aznar, J. Corella, J. Delgado, J. Lahoz, Improved steam gasification of lignocellulosic residues in a fluidized-bed with commercial steam reforming catalysts, Ind. Eng. Chem. Res. 32 (1993) 1.
DOI: 10.1021/ie00013a001
Google Scholar
[19]
I. Narva´ez, J. Corella, A. Orı´o, Fresh tar (from a biomass gasifier) elimination over a commercial steam-reforming catalyst. Kinetics and effect of different variables of operation, Ind. Eng. Chem. Res. 36 (1997) 317.
DOI: 10.1021/ie960235c
Google Scholar
[20]
M.P. Caballero, M.P. Aznar, J. Gil, et al, Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 1. hot gas upgrading by the catalytic reactor, Chem. Res. 36 (1997) 5227.
DOI: 10.1021/ie970149s
Google Scholar
[21]
M.P. Aznar, M.A. Caballero, J. Gil, et al, Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. catalytic tar removal, Ind. Eng. Chem. Res. 37 (1998) 2668.
DOI: 10.1021/ie9706727
Google Scholar
[22]
J. Corella, A. Orı´o, J. -M. Toledo, Biomass gasification with air in a fluidized bed: Exhaustive tar elimination with commercial steam reforming catalysts, Energy and Fuels, 13 (1999) 702.
DOI: 10.1021/ef980221e
Google Scholar
[23]
S. Rapagna´, H. Provendier, C. Petit, et al, Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification, Biomass and Bioenergy, 22 (2002) 377.
DOI: 10.1016/s0961-9534(02)00011-9
Google Scholar
[24]
J. Arauzo, D. Radlein, J. Piskorz, et al, Catalytic pyrogasification of biomass. evaluation of modified nickel catalysts, Ind. Eng. Chem. Res. 36 (1997) 67.
DOI: 10.1021/ie950271w
Google Scholar
[25]
S. Czernik, R. French, C. Feik, E. Chornet, Hydrogen by Catalytic steam reforming of liquid byproducts from biomass thermoconversion processes, Ind. Eng. Chem. Res. 41 (2002) 4209–4215.
DOI: 10.1021/ie020107q
Google Scholar
[26]
M. Marquevich, S. Czernik, E. Chornet, D. Montane´, Hydrogen from biomass: Steam reforming of model compounds of fast pyrolysis oil, Energy Fuels 13 (1999) 1160–1166.
DOI: 10.1021/ef990034w
Google Scholar
[27]
D.N. Bangala, N. Abatzoglou, J.P. Martin, E. Chornet, Kinetics of oxidation of ammonia in solutions containing ozone with or without hydrogen peroxide, Ind. Eng. Chem. Res. 36 (1997) 4184–4192.
DOI: 10.1021/ie960785a
Google Scholar
[28]
T. Yamaguchi, K. Yamasaki, O. Yoshida, et al, Deactivation and regeneration of catalyst for steam gasification of wood to methanol synthesis gas, Ind. Eng. Chem. Prod. Res. Dev. 25 (2) (1986) 239–243.
DOI: 10.1021/i300022a019
Google Scholar
[29]
L. Garcia, R. French, S. Czernik, E. Chornet, Catalytic steam reforming of bio-oils for the production of hydrogen: Effects of catalyst composition, Appl. Catal. A: Gen. 201 (2000) 225–239.
DOI: 10.1016/s0926-860x(00)00440-3
Google Scholar
[30]
D.N. Bangala, N. Abatzoglou, E. Chornet, Steam reforming of naphthalene on Ni-Cr/Al2O3 catalysts doped with MgO, TiO2 and La2O3, AIChE J. 44 (1998) 927–936.
DOI: 10.1002/aic.690440418
Google Scholar
[31]
C. Petit, A. Kiennemann, P. Chaumette, et, al, Oxidation catalyst and process for the partial oxidation of methane, US Patent No. 5, 447, 705 (1995).
Google Scholar
[32]
T. Hayakawa, H. Harihara, A.G. Andersen, et al, Sustainable Ni/Ca1−xSrxTiO3 catalyst prepared in situ for the partial oxidation of methane to synthesis gas, Appl. Catal. A 149 (1997) 391.
DOI: 10.1016/s0926-860x(96)00274-8
Google Scholar
[33]
H. Provendier, C. Petit, C. Estournès, et al, Stabilization of active Nickel catalysts in partial oxidation of methane to synthesis gas by iron addition, Appl. Catal. A 180 (1999) 163.
DOI: 10.1016/s0926-860x(98)00343-3
Google Scholar
[34]
R. Zhang, Y. Wang, R. C. Brown, Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2, Energy Conversion and Management, 48 (2007) 68–77.
DOI: 10.1016/j.enconman.2006.05.001
Google Scholar
[35]
K. Tomishige, T. Kimura, J. Nishikawa, et al, Promoting on steam gasication of biomass, effect of the interaction between Ni and CeO2 , Catal. Commun. 8 (2007) 1074 -1079.
DOI: 10.1016/j.catcom.2006.05.051
Google Scholar
[36]
A. Guerrero-Ruiz, A. Sepulveda-Eseribano, Rodriguez-Ramos, Cooperative action of cobalt and MgO for the catalysed reforming of CH4 with CO2, Catal Today, 21 (1994) 545.
DOI: 10.1016/0920-5861(94)80178-9
Google Scholar
[37]
C. Courson, L. Udron, C. Petit, Grafted NiO on natural olivine for dry reforming of methane, Science and Technology of Advanced Materials, 3 (2002) 271–282.
DOI: 10.1016/s1468-6996(02)00026-8
Google Scholar
[38]
L. FU, S. LU, W. XIE, et al, Effect of Basic Promotors on the Performance of Ni/CaO-Al2O3 Catalysts, Journal of Molecular Catalysis (China), 14 (2000) 3: 179-183.
Google Scholar