[1]
T. Fujiwara, I. Somiya, H. Tsuno, Y. Okuno, Effect of draft tube diameter on nitrogen removal from domestic sewage in a draft tube type reactor. Water Sci. Technol. 38 (1998) 319-326.
DOI: 10.2166/wst.1998.0076
Google Scholar
[2]
H.Y. Guo, J.T. Zhou, J. Su, Z.Y. Zhang, Integration of nitrification and denitrification in airlift bioreactor. Biochem. Eng. J. 23 (2005) 57-62.
DOI: 10.1016/j.bej.2004.05.010
Google Scholar
[3]
T. Hano, M. Matsumoto, K. Kuribayashi, Y. Hatate, Biological nitrogen removals in a bubble column with a draft tube. Chem. Eng. Sci. 47 (1992) 3737–3744.
DOI: 10.1016/0009-2509(92)85092-p
Google Scholar
[4]
R.C. Jin, P. Zheng, Q. Mahmood, L. Zhang, Performance of a nitrifying airlift reactor using granular sludge. Sep. Purif. Technol. 63 (2008) 670-675.
DOI: 10.1016/j.seppur.2008.07.012
Google Scholar
[5]
L. Meng, Y. Bando, M. Nakamura, Development of rectangular airlift bubble column installed with support material for enhancement of nitrogen removal. J. Biosci. Bioeng. 98 (2004) 269–273.
DOI: 10.1016/s1389-1723(04)00280-4
Google Scholar
[6]
E. Walters, A. Hille, M. He, C. Ochmann, H. Horn, Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material. Water Res. 43 (2009) 4461-4468.
DOI: 10.1016/j.watres.2009.07.005
Google Scholar
[7]
P.B. Dhamole, R.R. Nair, S.F. D'Souza, S. Lele, Simultaneous removal of carbon and nitrate in an airlift bioreactor. Bioresour. Technol. 100 (2009) 1082-1086.
DOI: 10.1016/j.biortech.2008.07.060
Google Scholar
[8]
Y. Bando, T. Kato, K. Yasuda, Y. Sakurai, M. Nakamura, Wastewater treatment by anaerobic-aerobic activated sludge method in bubble column with draft tube. J. Chem. Eng. Jpn. 32 (1999) 770-775.
DOI: 10.1252/jcej.32.770
Google Scholar
[9]
R. Bao, S. Yu, W. Shi, X. Zhang, Y. Wang, Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature. J. Hazard. Mater. 168 (2009) 1334-1340.
DOI: 10.1016/j.jhazmat.2009.03.020
Google Scholar
[10]
J.P. Wen, X.Q. Jia, L. Pan, C.L. Wang, G.Z. Mao, Nitrifying treatment of wastewater from fertilizer production in a multiple airlift loop bioreactor. Biochem. Eng. J. 25 (2005) 33-37.
DOI: 10.1016/j.bej.2005.03.010
Google Scholar
[11]
Z.Q. Yang, S.Q. Zhou, The biological treatment of landfill leachate using a simultaneous aerobic and anaerobic (SAA) bio-reactor system. Chemosphere. 72 (2008) 1751-1756.
DOI: 10.1016/j.chemosphere.2008.04.090
Google Scholar
[12]
W. Gujer, M. Henze, T. Mino, The activated sludge model no. 2: Biological phosphorus removal. Water Sci. Technol. 31(1995) 183-193.
Google Scholar
[13]
M. Henze, W. Gujer, T. Mino, Activated sludgemodel no. 2D, ASM2D. Water Sci. Technol. 39(1999) 165-182.
DOI: 10.2166/wst.1999.0036
Google Scholar
[14]
W. Gujer, M. Henze, T. Mino. Activited sludge model no. 3. Water Sci. Technol. 39(1999) 183-193.
Google Scholar
[15]
APHA, Standard Methods for Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC., (1998).
Google Scholar
[16]
H. Hauduc, S. Gillot, L. Rieger, T. Ohtsuki, A. Shaw, I. Takács, S. Winkler. Activated sludge modelling in practice: an international survey. Water Sci. Technol. 60 (2009) 1943-(1951).
DOI: 10.2166/wst.2009.223
Google Scholar
[17]
H. Hauduc, L. Rieger, T. Ohtsuki, A. Shaw, I. Takács, S. Winkler, A. Héduit, P.A. Vanrolleghem, S. Gillot. Activated sludge modelling: development and potential use of a practical applications database, Water Sci. Technol. 63 (2011) 2164-2182.
DOI: 10.2166/wst.2011.368
Google Scholar
[18]
G.T. Daigger, Apractitioner's perspective on the uses and future developments for wastewater treatment modelling. Water Sci. Technol. 63 (2011) 516-526.
DOI: 10.2166/wst.2011.252
Google Scholar