Effect of Synthetic Wastewater by Electrochemical Pretreatment on Chlorella vulgaris Growth and Nutrients Removal

Article Preview

Abstract:

Electrochemical processing combined with the system of microalgae Chlorella vulgaris was used to treat the synthetic organic wastewater in this paper. The effect of wastewater concentration on the biomass growth and nutrients removal was investigated. Three levels of the wastewater concentrations were ranked as Low, Mid and High, respectively. After 2 h of electrolysis pretreatment and 10 d of microalgae cultivation, TOC, NH4-N, and TP concentrations in the group Low were reduced by 83.7%, 99.3% and 95.0%, respectively. The Chlorella vulgaris in the groups Mid and High without electrolysis pretreatment did not survive longer than 24 h, whereas it grown well in the wastewater pretreated by electrolysis. The dry weight (DW) of Chlorella vulgaris in the group Low with electrolysis pretreatment was increased from 0.048 g/l to 1.087 g/l by 10 d cultivation. Results indicate that electrolysis pretreatment for wastewater can provide appropriate conditions for the subsequent biological treatment and efficiently promote the biomass growth of Chlorella vulgaris.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-42

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.E. de-Bashan, M. Moreno, J.P. Hernandez, Y. Bashan, Removal of ammonium and phosphorous ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmbilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense, Water Res. 36(2002).

DOI: 10.1016/s0043-1354(01)00522-x

Google Scholar

[2] L.E. de-Bashan, A. Trejo, V.A.R. Huss, J.P. Hernandez, Y. Bashan, Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater, Bioresour. Technol. 99(2008) 4980-4989.

DOI: 10.1016/j.biortech.2007.09.065

Google Scholar

[3] C.P. Feng, N. Sugiura, S. Shimada, T. Maekawa, Development of a high performance electrochemical wastewater treatment system, J. Hazard. Mater. B103(2003) 65-78.

DOI: 10.1016/s0304-3894(03)00222-x

Google Scholar

[4] L.E. González, R.O. Cañizares, S. Baena, Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus, Bioresour. Technol, 60(1997) 259-262.

DOI: 10.1016/s0960-8524(97)00029-1

Google Scholar

[5] J. Kim, B.P. Lingaraju, R. Rheaume, J.Y. Lee, K.F. Siddiqui, Removal of ammonia from wastewater effluent by Chlorella vulgaris, TsingHua Science and Technol. 15(2010) 391-396.

DOI: 10.1016/s1007-0214(10)70078-x

Google Scholar

[6] M.S. Kumar, Z.H. Miao, S.K. Wyatt, Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium, Boresour. Technol. 101(2010) 6012-6018.

DOI: 10.1016/j.biortech.2010.02.080

Google Scholar

[7] N.F.Y. Tam, Y.S. Wong, Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media, Boresour. Technol. 57(1996) 45-50.

DOI: 10.1016/0960-8524(96)00045-4

Google Scholar

[8] L. Travieso, F. Benítez, E. Sánchez, R. Borja, A. Martín, M.F. Colmenarejo, Batch mixed culture of Chlorella vurlgaris using settled and diluted piggery waste, Ecol. Eng. 28(2006)158-165.

DOI: 10.1016/j.ecoleng.2006.06.001

Google Scholar

[9] X. Li, H.Y. Hu, K. Gan, Y.X. Sun, Effects of different nitrogen and phosphorous concentrations on the growth, nitrogen uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp, Bioresour. Technol. 101(2010) 5494-5500.

DOI: 10.1016/j.biortech.2010.02.016

Google Scholar

[10] G.H. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol. 38 (2004) 11-41.

Google Scholar

[11] J.H. Fan, L.M. Ma, The pretreatment by the Fe-Cu process for enhancing biological degradability of the mixed wastewater, J. Hazard. Mater. 164(2009) 1392-1397.

DOI: 10.1016/j.jhazmat.2008.09.115

Google Scholar

[12] C.J. Israilides, A.G. Vlyssides, V.N. Mourafeti, G. Karvouni, Olive oil wastewater treatment with the use of an electrolysis system, Bioresour. Technol. 61(1997) 163-170.

DOI: 10.1016/s0960-8524(97)00023-0

Google Scholar

[13] M. Kobya, E. Senturk, M. Bayramoglu, Treatment of poultry slaughterhouse wastewaters by electrocogulation, J. Hazard. Mater. B133(2006) 172-176.

DOI: 10.1016/j.jhazmat.2005.10.007

Google Scholar

[14] J. Mo, J.E. Hwang, J. Jegal, J. Kim, Pretreatment of a dyeing wastewater using chemical coagulants, Dyes and Pigments. 72(2007) 240-245.

DOI: 10.1016/j.dyepig.2005.08.022

Google Scholar

[15] M. Panizza, G. Cerisola, Olive mill wastewater treatment by anodic oxidation with parallel plate electrodes, Water Res. 40(2006) 1179-1184.

DOI: 10.1016/j.watres.2006.01.020

Google Scholar

[16] G.B. Raju, M.T. Karuppiah, S.S. Latha, D.L. Priya, S. Parvathy, S. Prabhakar, Electrochemical pretreatment of textile effluents and effect of electrode materials on the removal of organics, Desalination, 249(2009) 167-174.

DOI: 10.1016/j.desal.2008.08.012

Google Scholar

[17] M. Panizza, G. Cerisola, Applicability of electrochemical methods to carwash wastewaters for reuse, Part 2: Electrocoagulation and anodic oxidation integrated process, J. Electroanal. Chem. 638(2010) 236-240.

DOI: 10.1016/j.jelechem.2009.11.003

Google Scholar

[18] M.R.G. Santos, M.O.F. Goulart, J. Tonholo, C.L.P.S. Zanta, The application of electrochemical technology to the remediation of oily wastewater, Chemosphere. 64(2006) 393-399.

DOI: 10.1016/j.chemosphere.2005.12.036

Google Scholar

[19] C. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment, Electrochimica Acta. 39(1994) 1857-1862.

DOI: 10.1016/0013-4686(94)85175-1

Google Scholar

[20] P. Cañizares, A. Beteta, C. Sáez, L. Rodríguez, M.A. Rodrigo, Use of electrochemical technology to increase the quality of the effluents of bio-oxidation processes. A case studied, Chemosphere. 72(2008) 1080-1085.

DOI: 10.1016/j.chemosphere.2008.04.004

Google Scholar

[21] N.A. Salles, F. Fourcade, F. Geneste, D. Floner, A. Amrane, Relevance of an electrochemical process prior to a biological treatment for the removal of an organophosphorous pesticide, phosmet, J. Hazard. Mater. 181(2010) 617-623.

DOI: 10.1016/j.jhazmat.2010.05.057

Google Scholar

[22] S.H. Lin, C.L. Wu, Electrochemical removal of nitrite and ammonia for aquaculture, Water Res. 30(1996) 715-721.

DOI: 10.1016/0043-1354(95)00208-1

Google Scholar

[23] A. Kapałka, A. Cally, S. Neodo, C. Comninellis, M. Wächter, K.M. Udert, Electrochemical behavior of ammonia at Ni/Ni(OH)2 electrode. Electrochem. Commun. 12(2010) 18-21.

DOI: 10.1016/j.elecom.2009.10.026

Google Scholar

[24] L. Li, Y. Liu, Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics, J. Hazard, Mater. 161(2009) 1010-1016.

DOI: 10.1016/j.jhazmat.2008.04.047

Google Scholar

[25] J.F.E. Gootzen, A.H. Wonders, W. Visscher, R.A. Van Santen, J.A.R. Van Veen, A DEWS and cyclic voltammetry study of NH3 oxidation on platinized platinum, Electrochim. Acta. 43(1998) 1851-1861.

DOI: 10.1016/s0013-4686(97)00285-5

Google Scholar

[26] N. Bektaş, H. Akbulut, H. Inan, A. Dimoglo, Removal of phosphate from aqueous solution by electro-coagulation, J. Hazard. Mater. 106B(2004) 101-105.

Google Scholar

[27] M.E. Martínez, S. Sánchez, J.M. Jiménez, F.E. Yousfi, L. Muñoz, Nitrogen and phosphorous removal from urban wastewater by the microalga Scenedesmus obliquus, Boresour. Technol. 73(2000) 263-272.

DOI: 10.1016/s0960-8524(99)00121-2

Google Scholar