New EM Transmitter with Y3Fe5O12 Based Magnetic Feeders Potentially Used for Seabed Logging Application

Article Preview

Abstract:

Sea bed logging (SBL) is a new technique for detection of deep target hydrocarbon reservoir. Powerful electromagnetic (EM) transmitter is required for the transmission of EM signal underneath the seabed. New aluminum transmitter with yttrium iron garnet (Y3Fe5O12) based magnetic feeders was used in a scale tank to increase the magnitude of the magnetic field. Yttrium iron garnet samples were prepared using self combustion technique at different sintering temperatures of 750°C, 950°C and 1150°C. Characterizations of Y3Fe5O12 samples were done by using XRD, RAMAN, FESEM and Impedence network analyser. X-ray diffraction results revealed that yttrium iron garnet phase with good crystallinity appeared at sintering temperature of 1150°C. Nanoparticles size ranging from 60 to 110 nm was investigated. Raman results also confirmed garnet structure of yttrium iron garnet at sintering temperature of 1150°C. Field emission scanning electron microscopy (FESEM) was used to image the morphology of the Y3Fe5O12 nanoparticles. Magnetic properties of Y3Fe5O12 magnetic feeders illustrates that Y3Fe5O12 has high Initial permeability (58.054), high Q-factor (59.842) and low loss factor (0.0003) at sintering temperature of 1150°C. Y3Fe5O12 magnetic feeders with high Q factor were chosen for new aluminum EM transmitter. Experiments with a scale factor of 2000 were carried out in scaled tank. It was found that Al transmitter with Y3Fe5O12 magnetic feeders increased magnitude of magnetic field strength up to 180%.

You might also be interested in these eBooks

Info:

[1] L. O. Loseth, H. M. Pedersen, S. Pettersen, T. S. Ellingsrud, T. Eidesmo, A scaled experiment for the verification of the Seabed Logging method, J. Appl. Geophys. 64, 47–55 (2008).

DOI: 10.1016/j.jappgeo.2007.12.002

Google Scholar

[2] M. N. Akhtar, N. Yahya, K. Koziol, N. Nasir, Synthesis and characterizations of Ni0. 8Zn0. 2Fe2O4-MWCNTs composites for their application in seabed logging, Ceram. Int. 37 (2011) 3237-3245.

DOI: 10.1016/j.ceramint.2011.05.113

Google Scholar

[3] M. N. Akhtar, N. Yahya, P. B. Hussain, Structural and magnetic characterizations of nano structured Ni0. 8Zn0. 2Fe2O4 prepared by self combustion method, Int. J. Basic & App. Sci. (IJBAS). 9 (2009) 151-154.

Google Scholar

[4] S. Ellingsrud, T. Eidesmo, S. Johansen, Remote sensing of hydrocarbon layers by seabed logging (SBL) results from a cruise offshore Angola, The leading Edge. 21 (2002) 972-982.

DOI: 10.1190/1.1518433

Google Scholar

[5] F. N. Kong, H. Westerdah, F. Antonsen, Excitation of a long wire antenna-Antennas from 200 MHz to 1 Hz, Tenth International conference on Ground Penetrating Radar; 21 -24 June, Delft, The Netherlands (2004).

Google Scholar

[6] M. A. Gilleo, Ferromagnetic Materials: A handbook of the preparation of magnetically ordered substances, E.P. Wohlfarth, North-Holland, Amsterdam (1980).

Google Scholar

[7] M. V. Kunzentsov, Q. A. Pankhurst, I. P. Parkin, L. Affeck, Y. K. Morozov, Self-propagating high temperature synthesis of yttrium iron chromium garnets Y3Fe5-xCrxO12 (0≤x≤0. 6), J. Mater. Chem. 10 (2000) 755.

DOI: 10.1039/a909007j

Google Scholar

[8] Z. A. Motlagh, M. Mozaffari, and J. Amighan, Preparation of nano-sized Al-substituted yttrium iron garnets by the mechanochemical method and investigation of their magnetic properties, J. Magn. Mag. Mater, 321 (2009) 1980-(1984).

DOI: 10.1016/j.jmmm.2008.12.025

Google Scholar

[9] A. Habishi, R. Yahya, N. Shafie, M. S. E. Ismail, I. Waje, S. B. Saad, Preparation and characterization of aluminum substitute yttrium iron garnet nanoparticles by sol-gel technique, Int. Advanced Tech. Cong. (ATCI) (2005) 577-583.

Google Scholar

[10] P. Vaqueiro, M. P. C. Lopez, M. A. L. Quintela, Annealing dependence of magnetic properties in nanostructured particles of yttrium iron garnet prepared by citrate gel, process J. Sol. Sta. Chem. 126 (1996) 161-168.

DOI: 10.1016/s0304-8853(96)00728-7

Google Scholar

[11] N. Yahya, R. A. H. Masoud, M. Zaid, Synthesis of Al3Fe5O12 cubic structure by extremely low sintering temperature of sol gel technique, Am. J. Eng. App. Sci. 2 (2009)76-79.

DOI: 10.3844/ajeas.2009.76.79

Google Scholar

[12] J. L. Rehspringer, J. Burik, D. Niznansky, A. klarkora, Characterisation of bismuth-doped yttrium iron garnet layers prepared by sol–gel process, J. Magn. Magn . Mater. 211 (2000) 291-295.

DOI: 10.1016/s0304-8853(99)00749-0

Google Scholar

[13] M. L. Wang, Z. W. Shih, C. H. Lin, Reaction mechanism of producing barium hexaferrites from γ-Fe2O3 and Ba(OH)2 by hydrothermal method, J. Cryst. Growth. 114 (1991) 435.

DOI: 10.1016/0022-0248(91)90059-e

Google Scholar

[14] J. Ding, H. Yang, W. F. Miao, P. G. Mccormick, R. Street, High coercivity Ba hexaferrite prepared by mechanical alloying, J. Alloys. Compd. 221 (1995) 70.

DOI: 10.1016/0925-8388(94)01402-7

Google Scholar

[15] H. Tang, Y. W. Du, Z. Q. Qiu, J. C. Walker, Mossbauer investigation of zinc ferrite particles, J. Appl. Phys. 63 (1988) 4105.

Google Scholar

[16] E. Lucchini, S. Meriani, G. Sloker, Sintering of glass bonded ceramic barium hexaferrite magnetic powders, J. Mater. Sci. 18 (1983) 331.

DOI: 10.1007/bf01111950

Google Scholar

[17] S. Deka, P. A. Joy, Characterization of nanosized NiZn ferrite powders synthesized by an autocombustion method, Mat. Che. Phys. 100 (2006) 98-101.

DOI: 10.1016/j.matchemphys.2005.12.012

Google Scholar

[18] F. X. Liu, T. Z. Li, H. G. Zhang, Structure and magnetic properties of SnFe2O4 nanoparticles, Phys. Lett. A. 323 (2004) 305.

Google Scholar

[19] S. H. Vajargah, H. R. Madaah, Hosseini, Z. A. Nemati, Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate-citrate gel, J. Alloys. Compd. 430 (2007) 339-343.

DOI: 10.1016/j.jallcom.2006.05.023

Google Scholar

[20] M. N. Akhtar, N. Yahya, H. Daud, A. Shafie, H. M. Zaid, M. Kashif, N. Nasir, Development of EM wave guide amplifier potentially used for sea bed logging (SBL), J. Appl. Sci. 11 (2011) 1361–1365.

DOI: 10.3923/jas.2011.1361.1365

Google Scholar

[21] N. Yahya, M. N. Akhtar, N. Nasir, A. Shafie, M. S. Jabeli, K. Koziol, CNT Fibres/Aluminium-NiZnFe2O4 based EM transmitter for improved magnitude vs. offset (MVO) in a scaled marine environment, J. Nanosci. Nanotechnol. 12 (2012) 8100-8109.

DOI: 10.1166/jnn.2012.4528

Google Scholar

[22] D. S. Parasins, Principles of Applied Geophysics, Fifth ed, Chapman & Hall, (1997).

Google Scholar

[23] M. Rajendran, S. Deka, P. A. Joy, A. K. Bhattacharya, Size-dependent magnetic properties of nanocrystalline yttrium iron garnet powders, J. Magn. Magn. Mater. 301 (2006) 212-219.

DOI: 10.1016/j.jmmm.2005.06.027

Google Scholar

[24] M. P. Horvath, Microwave applications of soft ferrite, J. Magn. Magn. Mater. 215 (2006) 171- 183.

Google Scholar

[25] S. Verma, S. D. Pradhan, R. Pasricha, S. R. Sainkar, P. A. Joy, A Novel Low Temperature Synthesis of Nanosized NiZn Ferrite, J. Am. Cer. Soc. 88 (2005) 2597-2599.

DOI: 10.1111/j.1551-2916.2005.00445.x

Google Scholar

[26] S. H. Vajargah, H. R. M. Hosseini, Z. A. Nemati, Preparation and characterization of nanocrystalline misch-metal-substituted yttrium iron garnet powder by the sol–gel combustion process, Int. J. Appl. Ceram. Technol. 5 (2008) 464-468.

DOI: 10.1111/j.1744-7402.2008.02241.x

Google Scholar

[27] J. P. Ganne, R. Lebourgeois, M. Pate, D. Dubreuil, L. Pinier, H. Pascard, The electromagnetic properties of Cu-substituted garnets with low sintering temperature, J. Eur. Cer. Soc. 27 (2007) 2771-2777.

DOI: 10.1016/j.jeurceramsoc.2006.11.054

Google Scholar

[28] Z. Abbas, R.M. Al-habashi, K. Khalid, M. Maarof, Garnet Ferrite (Y3Fe5O12) Nanoparticles Prepared via Modified Conventional Mixing Oxides (MCMO) Method, Eur. J. Sci. Res. 36 (2009) 154-160.

DOI: 10.4028/www.scientific.net/jnanor.29.59

Google Scholar

[29] E. C. Snelling, Soft ferrites. Second ed, Butterworths, London, (1998).

Google Scholar

[30] J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande, A. Mitra, S. R. Sainkar, P. S. A. Kumar, S. K. Date, Effect of Cu substitution on the magnetic and electrical properties of Ni–Zn ferrite synthesised by soft chemical method, Mater. Chem. Phys. 59 (1999).

DOI: 10.1016/s0254-0584(99)00019-x

Google Scholar

[31] R. V. Mangalaraja, S. Ananthakumar, P. Manohar, F. D. Gnanam, Electrical and Dielectric Behaviour of Ni0. 8Zn0. 2Fe2O4 Prepared Through Flash Combustion Technique, Mat. Sci. Eng. A. 55 (2003) 320-324.

DOI: 10.1016/s0304-8853(02)00413-4

Google Scholar