[1]
L. O. Loseth, H. M. Pedersen, S. Pettersen, T. S. Ellingsrud, T. Eidesmo, A scaled experiment for the verification of the Seabed Logging method, J. Appl. Geophys. 64, 47–55 (2008).
DOI: 10.1016/j.jappgeo.2007.12.002
Google Scholar
[2]
M. N. Akhtar, N. Yahya, K. Koziol, N. Nasir, Synthesis and characterizations of Ni0. 8Zn0. 2Fe2O4-MWCNTs composites for their application in seabed logging, Ceram. Int. 37 (2011) 3237-3245.
DOI: 10.1016/j.ceramint.2011.05.113
Google Scholar
[3]
M. N. Akhtar, N. Yahya, P. B. Hussain, Structural and magnetic characterizations of nano structured Ni0. 8Zn0. 2Fe2O4 prepared by self combustion method, Int. J. Basic & App. Sci. (IJBAS). 9 (2009) 151-154.
Google Scholar
[4]
S. Ellingsrud, T. Eidesmo, S. Johansen, Remote sensing of hydrocarbon layers by seabed logging (SBL) results from a cruise offshore Angola, The leading Edge. 21 (2002) 972-982.
DOI: 10.1190/1.1518433
Google Scholar
[5]
F. N. Kong, H. Westerdah, F. Antonsen, Excitation of a long wire antenna-Antennas from 200 MHz to 1 Hz, Tenth International conference on Ground Penetrating Radar; 21 -24 June, Delft, The Netherlands (2004).
Google Scholar
[6]
M. A. Gilleo, Ferromagnetic Materials: A handbook of the preparation of magnetically ordered substances, E.P. Wohlfarth, North-Holland, Amsterdam (1980).
Google Scholar
[7]
M. V. Kunzentsov, Q. A. Pankhurst, I. P. Parkin, L. Affeck, Y. K. Morozov, Self-propagating high temperature synthesis of yttrium iron chromium garnets Y3Fe5-xCrxO12 (0≤x≤0. 6), J. Mater. Chem. 10 (2000) 755.
DOI: 10.1039/a909007j
Google Scholar
[8]
Z. A. Motlagh, M. Mozaffari, and J. Amighan, Preparation of nano-sized Al-substituted yttrium iron garnets by the mechanochemical method and investigation of their magnetic properties, J. Magn. Mag. Mater, 321 (2009) 1980-(1984).
DOI: 10.1016/j.jmmm.2008.12.025
Google Scholar
[9]
A. Habishi, R. Yahya, N. Shafie, M. S. E. Ismail, I. Waje, S. B. Saad, Preparation and characterization of aluminum substitute yttrium iron garnet nanoparticles by sol-gel technique, Int. Advanced Tech. Cong. (ATCI) (2005) 577-583.
Google Scholar
[10]
P. Vaqueiro, M. P. C. Lopez, M. A. L. Quintela, Annealing dependence of magnetic properties in nanostructured particles of yttrium iron garnet prepared by citrate gel, process J. Sol. Sta. Chem. 126 (1996) 161-168.
DOI: 10.1016/s0304-8853(96)00728-7
Google Scholar
[11]
N. Yahya, R. A. H. Masoud, M. Zaid, Synthesis of Al3Fe5O12 cubic structure by extremely low sintering temperature of sol gel technique, Am. J. Eng. App. Sci. 2 (2009)76-79.
DOI: 10.3844/ajeas.2009.76.79
Google Scholar
[12]
J. L. Rehspringer, J. Burik, D. Niznansky, A. klarkora, Characterisation of bismuth-doped yttrium iron garnet layers prepared by sol–gel process, J. Magn. Magn . Mater. 211 (2000) 291-295.
DOI: 10.1016/s0304-8853(99)00749-0
Google Scholar
[13]
M. L. Wang, Z. W. Shih, C. H. Lin, Reaction mechanism of producing barium hexaferrites from γ-Fe2O3 and Ba(OH)2 by hydrothermal method, J. Cryst. Growth. 114 (1991) 435.
DOI: 10.1016/0022-0248(91)90059-e
Google Scholar
[14]
J. Ding, H. Yang, W. F. Miao, P. G. Mccormick, R. Street, High coercivity Ba hexaferrite prepared by mechanical alloying, J. Alloys. Compd. 221 (1995) 70.
DOI: 10.1016/0925-8388(94)01402-7
Google Scholar
[15]
H. Tang, Y. W. Du, Z. Q. Qiu, J. C. Walker, Mossbauer investigation of zinc ferrite particles, J. Appl. Phys. 63 (1988) 4105.
Google Scholar
[16]
E. Lucchini, S. Meriani, G. Sloker, Sintering of glass bonded ceramic barium hexaferrite magnetic powders, J. Mater. Sci. 18 (1983) 331.
DOI: 10.1007/bf01111950
Google Scholar
[17]
S. Deka, P. A. Joy, Characterization of nanosized NiZn ferrite powders synthesized by an autocombustion method, Mat. Che. Phys. 100 (2006) 98-101.
DOI: 10.1016/j.matchemphys.2005.12.012
Google Scholar
[18]
F. X. Liu, T. Z. Li, H. G. Zhang, Structure and magnetic properties of SnFe2O4 nanoparticles, Phys. Lett. A. 323 (2004) 305.
Google Scholar
[19]
S. H. Vajargah, H. R. Madaah, Hosseini, Z. A. Nemati, Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate-citrate gel, J. Alloys. Compd. 430 (2007) 339-343.
DOI: 10.1016/j.jallcom.2006.05.023
Google Scholar
[20]
M. N. Akhtar, N. Yahya, H. Daud, A. Shafie, H. M. Zaid, M. Kashif, N. Nasir, Development of EM wave guide amplifier potentially used for sea bed logging (SBL), J. Appl. Sci. 11 (2011) 1361–1365.
DOI: 10.3923/jas.2011.1361.1365
Google Scholar
[21]
N. Yahya, M. N. Akhtar, N. Nasir, A. Shafie, M. S. Jabeli, K. Koziol, CNT Fibres/Aluminium-NiZnFe2O4 based EM transmitter for improved magnitude vs. offset (MVO) in a scaled marine environment, J. Nanosci. Nanotechnol. 12 (2012) 8100-8109.
DOI: 10.1166/jnn.2012.4528
Google Scholar
[22]
D. S. Parasins, Principles of Applied Geophysics, Fifth ed, Chapman & Hall, (1997).
Google Scholar
[23]
M. Rajendran, S. Deka, P. A. Joy, A. K. Bhattacharya, Size-dependent magnetic properties of nanocrystalline yttrium iron garnet powders, J. Magn. Magn. Mater. 301 (2006) 212-219.
DOI: 10.1016/j.jmmm.2005.06.027
Google Scholar
[24]
M. P. Horvath, Microwave applications of soft ferrite, J. Magn. Magn. Mater. 215 (2006) 171- 183.
Google Scholar
[25]
S. Verma, S. D. Pradhan, R. Pasricha, S. R. Sainkar, P. A. Joy, A Novel Low Temperature Synthesis of Nanosized NiZn Ferrite, J. Am. Cer. Soc. 88 (2005) 2597-2599.
DOI: 10.1111/j.1551-2916.2005.00445.x
Google Scholar
[26]
S. H. Vajargah, H. R. M. Hosseini, Z. A. Nemati, Preparation and characterization of nanocrystalline misch-metal-substituted yttrium iron garnet powder by the sol–gel combustion process, Int. J. Appl. Ceram. Technol. 5 (2008) 464-468.
DOI: 10.1111/j.1744-7402.2008.02241.x
Google Scholar
[27]
J. P. Ganne, R. Lebourgeois, M. Pate, D. Dubreuil, L. Pinier, H. Pascard, The electromagnetic properties of Cu-substituted garnets with low sintering temperature, J. Eur. Cer. Soc. 27 (2007) 2771-2777.
DOI: 10.1016/j.jeurceramsoc.2006.11.054
Google Scholar
[28]
Z. Abbas, R.M. Al-habashi, K. Khalid, M. Maarof, Garnet Ferrite (Y3Fe5O12) Nanoparticles Prepared via Modified Conventional Mixing Oxides (MCMO) Method, Eur. J. Sci. Res. 36 (2009) 154-160.
DOI: 10.4028/www.scientific.net/jnanor.29.59
Google Scholar
[29]
E. C. Snelling, Soft ferrites. Second ed, Butterworths, London, (1998).
Google Scholar
[30]
J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande, A. Mitra, S. R. Sainkar, P. S. A. Kumar, S. K. Date, Effect of Cu substitution on the magnetic and electrical properties of Ni–Zn ferrite synthesised by soft chemical method, Mater. Chem. Phys. 59 (1999).
DOI: 10.1016/s0254-0584(99)00019-x
Google Scholar
[31]
R. V. Mangalaraja, S. Ananthakumar, P. Manohar, F. D. Gnanam, Electrical and Dielectric Behaviour of Ni0. 8Zn0. 2Fe2O4 Prepared Through Flash Combustion Technique, Mat. Sci. Eng. A. 55 (2003) 320-324.
DOI: 10.1016/s0304-8853(02)00413-4
Google Scholar